期刊文献+

一种改进的基于DCS的分布式多用户协作频谱感知方法 被引量:1

An Improved Distributed Multi-User Cooperative Spectrum Sensing Method Based on DCS
在线阅读 下载PDF
导出
摘要 分布式压缩感知(DCS)理论扩展了压缩感知理论的应用,将单信号的压缩采样扩展到信号群的压缩采样。协作频谱感知技术利用空间的宏集合弥补了单用户在认知无线电宽带频谱感知过程中可能出现检测错误的问题,但在复杂的信号重构过程中增加了计算量。针对这种情况,提出了一种改进的基于DCS的分布式多用户协作频谱感知方法。该改进方法的重构过程是在原OMP算法的基础上,通过利用上一时刻频谱感知所得到的频谱占用情况减少重构算法的计算量。仿真结果表明,在频谱占用情况变化缓慢的情况下,所提的改进方法不仅具有与原算法相同的重构效果,而且在认知用户数量较多的情况下,重构复杂度明显减小。 Distributed compressed sensing theory extends the application of compressed sensing theory, which brings single signal compression sampling to signal group compression sampling. Cooperative spectrum sensing technology uses space set macros to compensate detection error problems during the process of single-user wideband spectrum sensing. However, it increases computational complexity in the process of signal reconstruction. Aiming to this problem, an improved distributed multi-user cooperative spectrum sensing method based on DCS was proposed. On the basis of original OMP algorithm, the improved method reduced reconstruction algorithm's computational complexity through the utilization of previous spectrum occupancy situation. Simulation results indicate that, the proposed method achieves the same effect with the original algorithm under the circumstances of slow spectrum occupancy changes. Meanwhile, in the case of more cognitive users, this method reduces the reconstruction complexity significantly.
出处 《电信科学》 北大核心 2013年第11期45-51,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61102066)
关键词 分布式压缩感知 认知无线电 宽带频谱感知 多用户协作 重构复杂度 distributed compressed sensing, cognitive radio, wideband spectrum sensing, multi-user cooperation, reconstruction complexity
  • 相关文献

参考文献10

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Area in Communication, 2005, 23(2): 201-220.
  • 2顾斌,杨震,胡海峰.基于压缩感知信道能量观测的协作频谱感知算法[J].电子信息学报,2012,34(1):14-19.
  • 3赵知劲,张鹏,王海泉,尚俊娜.基于OMP算法的宽带频谱感知[J].信号处理,2012,28(5):723-728. 被引量:10
  • 4Baron D, Wakin M B, Duarte M F. Distributed compressed sensing of jointly sparse signals. Proceedings of IEEE 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2005:1537-1541.
  • 5Herman M, Strohmer T. High-resolution radar via compressed sensing. IEEE Transactions on Signal Processing, 2009, 57(6): 2275 -2284.
  • 6石磊,周正,唐亮,孙璇,张静.认知无线电网络中压缩协作频谱感知[J].北京邮电大学学报,2011,34(5):76-79. 被引量:9
  • 7Wang C L, Chen H W, Chou Y R. A credibility-based cooperative spectrum sensing technique for cognitive radio systems. Proceedings of Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, Budapest, Hungary, 2011:1-5.
  • 8Gu B, Yang Z, Hu H F, et al. Cooperative compressed sensing for wide-baud spectrum detection. Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) , Chengdu, China, 2010:1-4.
  • 9吴尘.基于压缩感知的信号重构算法研究.东南大学硕士学位论文.2012.
  • 10Baron D, Duarte M F, Wakin M B. Distributed Compressive Sensing. Cornell University Library, 2009.

二级参考文献21

  • 1张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:30
  • 2MacKay D J C, Wilson S T, Davey M C. Comparison of constructions of irregular Gallager codes [ J ]. IEEE Transactions on Communications, 1999, 47 ( 10 ) : 1449-1454.
  • 3Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [ J]. IEEE Transactions on Information Theory, 2001, 47(2) : 498-519.
  • 4Tang Liang, Zhou Zheng, Shi Lei, et al. Laplace prior based distributed compressive sensing [ C ]//Chinacom 2010. Beijing: [s.n.], 2010: 1-4.
  • 5Zhang Jing, Zhou Zheng, Yao Haipeng, et al. Spectrum sensing using collaborative beamforming for Ad hoc cogni- tive radio networks [C]//ISCIT 2010. Tokyo: Is. n. ], 2010: 1196-1199.
  • 6Meng Jia (Jasmine), Yin Wotao, Li Husheng, et al. Collaborative spectrum sensing from sparse observationsusing matrix completion for cognitive radio networks [ C ] ff ICASSP2010. Dallas: [s.n.], 2010: 3114-3117.
  • 7Dror Baron, Shriram Sarvotham, Baraniuk R G. compressive sensing Via belief propagation [ J Bayesian ]. IEEE Trans on Signal Processing, 2010, 58 ( 1 ) : 269-280.
  • 8D L Donoho. Compressed Sensing[J]. IEEE Trans. on Information Theory. 2006,52 (4) : 1289 - 1306.
  • 9Zhi Tian, B. G Georgos. Compressed Sensing for Wide- band Cognitive Radios [ C ]. IEEE International Confer- ence on Acoustics, Speech and Signal Processing,2007, 1357-1360.
  • 10Y L. Polo, Y. Wang, A Pandharipande. Compressive Wide-band Spectrum Sensing [ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009,1655-1667.

共引文献16

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部