期刊文献+

基于二叉树结构双优化的SVM多分类算法研究 被引量:4

Based on the Binary Tree Structure Double Optimization SVM Classification Algorithm
原文传递
导出
摘要 针对传统二叉树在多分类问题上存在分类精度不够高和时间复杂度较高的不足,提出了一种基于二叉树结构双优化的SVM多分类学习算法。此算法利用遗传算法对已经提取的特征参数子集和核参数进行双重优化,以获得最优的主要特征参数,从而有效地解决了样本结构复杂、分布不平坦的多分类识别问题。作者运用UCI数据库中的数据,通过仿真实验,并就经度和时间复杂度与有向无环图法和一对一法作比较,结果表明本文提出的算法具有较好的优越性。 Because of classification accuracy of the traditional binary tree for multi-classification problems is not high and it is too high for the time complexity, the authors of this paper present a new double optimization learning algorithm, based on the binary tree structure, which is a multi-classification algorithm. It makes the best of genetic algorithm to make feature parameters subset and kernel parameters optimized, in order to acquire the best important characteristic parameter combination for the purpose, and it can effectively solve the program of identification of complicated structure and uneven distribution sample. Combining with the UCI data in a database, through the simulation experiment, and compare the accuracy and time complexity with directed un-acyclic graph and one-to-one method, and the results show that the algorithm which has been proposed by the authors is effective in this paper.
作者 徐国浪 魏延
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期109-113,共5页 Journal of Chongqing Normal University:Natural Science
基金 重庆师范大学博士研究基金(No.11XLB047)
关键词 GA SVM 二叉树 多分类识别 GA SVM binary tree multi-classification identification
  • 相关文献

参考文献10

二级参考文献109

共引文献213

同被引文献44

  • 1刘倩,崔晨,周杭霞.改进型SVM多类分类算法在无线传感器网络中的应用[J].中国计量学院学报,2013,24(3):298-303. 被引量:8
  • 2冯少荣.决策树算法的研究与改进[J].厦门大学学报(自然科学版),2007,46(4):496-500. 被引量:67
  • 3Wolpaw J R,McFarland D J,Vaughan T M. Brain-computer interface research at the Wadsworth Center. Rehabilitation Engineering [J]. IEEE Transactions on Neural Systems and Rehabilitation, 2000,8 (2):222-226.
  • 4Wnlpaw J R,McFarland D J,Vaughan T M,et al. The Wadsworth Center brain computer interface (BCI) research and development program. Neural Systems and Rehabilita- tion Engineering[J]. IEEE Transactions on Rehabilitation Engineering, 2003,11 (2): 1-4.
  • 5Leuthardt,Schalk G,Wolpaw J R,et al. A brain-com puter interface using electrocorticographic signals in humans [J]. Journal of Neural Engineering, 2004,1 (2) :63-71.
  • 6Pfurtscheller G,Neuper C,Guger C,et al. Current trends in Graz brain-computer interface (BCI)research [J]. Rehabilita- tion Engineering, IEEE Transactions on,2000,8(2): 216-219.
  • 7Lemm S,Blankertz B,Curio G,et al. Spatio-spectral filters for improving the classification of single trial EEG [J]. Biomedical Engineering, IEEE Transactions on,2005,52 (9):1541-1548.
  • 8McFarland D J,Samacki W A,Wolpaw J R. Brain-computer interface (BCI) operation: optimizing information transfer rates[J]. Biological Psychology, 2003,63 (3) :237-251.
  • 9Pfurtscheller G,F. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical NeuroDhvsiolozv. 1999.110 ( 11 ): 1842-1857.
  • 10董婷.支持向量机分类算法在MATLAB环境下的实现[J].榆林学院学报,2008,18(4):94-96. 被引量:12

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部