期刊文献+

Al-Mg合金钨极气体保护焊接电弧的光谱特征提取方法 被引量:1

Arc Spectral Characteristics Extraction Method in Pulsed Gas Tungsten Arc Welding for Al-Mg Alloy
在线阅读 下载PDF
导出
摘要 以Al-Mg合金的脉冲交流钨极气体保护焊接为背景,运用主成分分析方法对电弧光谱进行冗余信息去除和特征信号提取,分别使用信号脉冲周期内平均和小波重构的方法对特征信号进行去脉冲干扰,并对特征信号和不同类型焊接缺陷间的关系进行研究.结果表明,第1、2主成分包含了电弧光谱中的主要信息,分别对应Ar I谱线和金属谱线,反映了焊接过程的不同方面,第1主成分特征信号与电弧的热量输入关系较大,而第2主成分特征信号与熔池的稳定性密切相关. In this paper, aimed at the problems in arc spectral information in Al-Mg Alloy pulsed alternating current (AC) GTAW, principal component analysis (PCA) was utilized for redundancy removal and spectral characteristic signals extraction. The spectral wavelengths were classified as the first and the sec ond principal components, associated with Ar I lines and metal lines respectively. pulse interference caused by welding current was eliminated by using mean value during signal's pulse period (MSP) and wavelet re construction. The relations between these extracted signals and different defects were discussed. The re sults show that the first principal component is closely related to the arc heat input while the second princi pal component is closely related to the weld pool stability.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第11期1655-1660,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51075268)
关键词 钨极气体保护焊 电弧光谱 主成分分析 特征提取 焊接缺陷 gas tungsten arc welding (GTAW) arc spectra principal component analysis characteristics extraction welding defect
  • 相关文献

参考文献12

  • 1Wang J J, IAn T, Chen S B. Obraining weld pool vi- sion information during aluminium alloy TIG welding [J]. IntJ AdvManufTech, 2005, 26(3): 219- 227.
  • 2. Xu Y, Yu H, Zhong J, et al. Real-time seam track- ing control technology during welding robot G-TAW process based on passive vision sensor[J]. J Mater Process Tech. 2012, 212(8): 1654- 1662.
  • 3Christner B, Lovell R, Campbell M. Developing a GTAW penetration control system for the Titan IV program[J]. Welding & Metal Fabrication, 1998, 66 : 29-38.
  • 4樊丁,黄健康,石玗,陈剑虹.基于电弧声ARMA双谱分析对熔滴过渡类型SVM模式识别[J].上海交通大学学报,2008,42(S1):42-45. 被引量:8
  • 5杨运强,李俊岳,胡胜钢,柳刚.熔化极脉冲电弧焊熔滴过渡特征光谱信息及其应用[J].焊接学报,2001,22(4):36-38. 被引量:10
  • 6Park H, Sehun R, Kim D. A fuzzy pattern recogni tion based system for monitoring laser weld quality [J]. Measurement Science and Technology, 2001 (12) : 1318-1324.
  • 7Li P J, Zhang Y M. Precision sensing of arc length in GTAW based on arc light spectrum [J]. J Manuf Sci E-T Asme, 2001, 123 (1): 62 -65.
  • 8Sforza P, de Blasiis D. On-line optical monitoring system for arc welding [J]. Independent Nondestruc- tive Testing and Evaluation, 2002, 35(1): 37-43.
  • 9Mirapeix J, Gareia-Allende P B, Cobo A, et al. Re- al-time arc-welding defect detection and classification with principal component analysis and artificial neural networks[J]. Independent Nondestructive Testing and Evaluation, 2007, 40(4): 315- 323.
  • 10宋永伦.交流焊接电弧的若干机理与工程应用基础[J].电焊机,2009,39(1):97-99. 被引量:6

二级参考文献14

共引文献24

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部