期刊文献+

基于概率神经网络的岩石薄片图像分类识别研究 被引量:22

Rock Image Classification Recognition Based on Probabilistic Neural Networks
在线阅读 下载PDF
导出
摘要 为实现岩石薄片图像孔隙识别的自动化,提出了一种基于聚类分割和神经网络相结合的分类识别方法。首先在图像中应用Kmeans聚类分割算法,将岩石图像分割为背景岩石和目标孔隙两类,并分别提取足够特征进行分类测试,效果良好。其次选100幅岩石图像,每组5幅图像共20组,每组200个数据进行验证。实验表明,建立好的概率神经网络可以准确分类识别出目标孔隙,识别平均正确率为95.12%,已达到实际应用需要。 In order to realize the recognition automation of rock section pore images, a method combined Kmeans clustering with probabilistic neural network is proposed and applied to rock section images. Firstly, Kmeans cluste- ring is used as segmentation algorithm, the rock images are divided into two types and extracted enough features and it is shown good classification effect on testing dataset. Secondly, 100 pieces of rock image section are used as vali- dation dataset, including 5 images of each 20 groups, a group has 200 data samplings. Experiments show that the probabilistic neural network can be used as rock texture classifier, the average correct classification rate is around 95.12%, which can meet the practical application needs.
出处 《科学技术与工程》 北大核心 2013年第31期9231-9235,共5页 Science Technology and Engineering
基金 国家自然科学基金(40872087)资助
关键词 Kmeans聚类 概率神经网络 岩石薄片图像 模式识别 color image segmentationimage pattern recognitionkmeans clustering probabilistic neural network rock section
  • 相关文献

参考文献13

二级参考文献70

共引文献202

同被引文献264

引证文献22

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部