期刊文献+

MONOTONICITY AND INEQUALITIES FOR THE GENERALIZED DISTORTION FUNCTION 被引量:2

MONOTONICITY AND INEQUALITIES FOR THE GENERALIZED DISTORTION FUNCTION
在线阅读 下载PDF
导出
摘要 The authors prove some monotonicity properties of functions involving the generalized Agard distortion function ηg(a,t), and obtain some inequalities for ηk(a, t) and relative distortion functions. The authors prove some monotonicity properties of functions involving the generalized Agard distortion function ηg(a,t), and obtain some inequalities for ηk(a, t) and relative distortion functions.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第6期1759-1766,共8页 数学物理学报(B辑英文版)
基金 supported by the Natural Science Foundation of China(11071069 and 11171307) the Natural Science Foundation of the Department of Education of Zhejiang Province(Y201328799)
关键词 generalized modular equation generalized η-distortion function monotonic-ity inequality generalized modular equation generalized η-distortion function monotonic-ity inequality
  • 相关文献

参考文献2

二级参考文献21

  • 1O Lehto, K I Virtanen. Quasiconformal Mappings in the Plane, Springer-Verlag, New York- Heidelberg, 1973.
  • 2X Y Ma, S L Qiu. Properties of the generalized elliptic integrals, J Zhejiang Sci-Tech Univ, 2007, 24: 200-205.
  • 3S L Qiu, M K Vamanamurthy, M Vuorinen. Bounds for quasiconformal distortion functions, J Math Anal Appl, 1997, 205: 43-64.
  • 4S L Qiu, M Vuorinen. Duplication inequalities for the ratios of hypergeometric functions, Forum Math, 2000, 12: 109-133.
  • 5S L Qiu, M Vuorinen. Special functions in geometric function theory, In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier Sci B V, Amsterdam, 2005, 621-659.
  • 6E D Rainville. Special Functions, MacMillan, New York, 1960.
  • 7M K Vamanamurthy, M Vuorinen. Functions inequalities, Jacobi products, and quasiconformal maps, Illinois J Math, 1994, 38: 394-419.
  • 8M Vuorinen. Conformal Geometry and Quasiregular Mappings, Springer-Verlag, Berlin, 1988.
  • 9G D Wang, X H Zhang, Y M Chu. A Holder mean inequality for the Hersch-Pfluger distortion function, Sci Sin Math, 2010, 40: 783-786.
  • 10M Abramowitz, I A Stegun (Eds.). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.

共引文献5

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部