期刊文献+

一种基于数据流分析的网络行为检测 被引量:4

Network behavior detection based on data stream analysis
在线阅读 下载PDF
导出
摘要 为了更好地对网络行为进行分析,提出了一种基于数据流分析的网络行为检测方法。通过分析网络系统体系架构,对网络行为进行形式化建模,并针对网络行为特点提出了一种基于与或图的行为描述方法,最终设计实现了基于数据流分析的网络行为检测算法。实验证明该方法能在多项式时间内完成数据流事件中的关系分析,而且与其他算法相比,能有效提高网络行为检测的查准率。 To make a better analysis of network behavior,this paper proposed a method of network behavior detection based on data stream analysis. Firstly, it modeled network behavior into formalization by analyzing the network system architecture. And aiming at the characteristics of network behavior, it brought out an expression of network behavior on the and/or graph. Finally, it designed and implemented the network behavior detection algorithm based on data stream analysis. The experiment results show that the proposed algorithm can complete the analysis of the relationship between data stream events in polynomial time, and compared with the other algorithm, the algorithm can effectively improve the network behavior detection precision.
出处 《计算机应用研究》 CSCD 北大核心 2013年第12期3800-3803,共4页 Application Research of Computers
基金 国家"973"计划资助项目(2011CB311801) 河南省科技创新人才计划资助项目(114200510001)
关键词 网络数据流 数据流分析 网络行为 行为建模 network data stream data stream analysis network behavior behavior modeling
  • 相关文献

参考文献12

二级参考文献116

  • 1郑军,胡铭曾,云晓春,郑仲.基于数据流方法的大规模网络异常发现[J].通信学报,2006,27(2):1-8. 被引量:17
  • 2王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 3Park J S, Sandhu R. Role-based Access Control on the Web[J]. ACM Transactions on Information and System Security, 2001, 4(1): 37-71.
  • 4Lu Jui-lin, Chert Rai-fu. Design and Implementation of a Fine-grained Menu Control Processor for Web-based Information Systems[J]. Future Generation Computer Systems, 2003, 19(7): 1105-1119.
  • 5Ma Junchang, Gu Zhimin. Finding Shared Fragments in Large Collections of Web Pages for Fragment-based Web Caching[C]// Proc. of the 5th IEEE International Symposium on Network Computing and Applications. Cambridge, Massachusetts, USA: [s. n.], 2006: 251-254.
  • 6Raghavan S, Garcia-Molina H. Crawling the Hidden Web[C]// Proceedings of the 27th International Conference on Very Large Databases. Roma, Italy: [s. n], 2001:129-138.
  • 7Zhai Yanhong, Liu Bing. Web Data Extraction Based on Partial Tree Alignment[C]//Proceedings of the 14th International World Wide Web Conference. Chiba, Japan: [s. n.], 2005: 76-85.
  • 8Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 9Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 10Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.

共引文献326

同被引文献38

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2郭海,郭义喜,李海林.网络安全建模与仿真研究[J].网络安全技术与应用,2006(9):38-39. 被引量:3
  • 3李锦泽,叶晓俊.关联规则挖掘算法研究现状[C]//第18届计算机技术与应用学术会议(CACIS).2007:216-220.
  • 4韩家炜.数据挖掘:概念与技术[M].3版北京:机械工业出版社,2012.
  • 5Wu Kaixing, Hao Juan, Wang Chunhua. Application of fuzzy association rules in intrusion detection [C] //International Conference on Internet Computing and Information Services, 2011: 269-272.
  • 6Ahadeh MS, Harold M, Jafar H. Design and analysis of ge- netic fuzzy systems for intrusion detection in computer networks [J]. Expert System with Applications, 2011, 38: 7067-7075.
  • 7Su Mingyang, Lin Chunyuen, Shengwei Chien. Genetic-fuzzy association rules for network intrusion detection systems [C] //IEEE International Conference on Fuzzy Systems, 2011 : 2046-2052.
  • 8Nikky Rai, Susheel Jain, Anurag Jain. Mining interesting positive and negative association rule based on improved genetic algorithm [J]. International Journal of Advanced Computer Science and Applications, 2014, 5 (1): 160-165.
  • 9Mohit K Gupta, Geeta Sikka. Association rules extraction using multi-objective feature of genetic algorithm [C] //Pro- ceedings of the World Congress on Engineering and Computer Science, 2013: 23-25.
  • 10Wang Wei, Guan Xiaohong, Zhang Xiangliang. A processing of mas-sive audit data streams for real-time anomaly intrusion detection [ J].Computer Communications,2008,31 (1) :58-72.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部