期刊文献+

一种应用于溯源秤的计算机视觉果蔬识别算法 被引量:2

A Fruits and Vegetables Classification Method Based on Computer Vision Used in Traceability Scales
在线阅读 下载PDF
导出
摘要 提出一种基于稀疏表征特征的果蔬识别算法,首先采用图像获取装置获取果蔬图片,对果蔬图片进行预处理,得到归一化果蔬图片,提取果蔬图片的5尺度8方向的Gabor小波特征,采用主频量分析算法对其进行降维处理,构建稀疏表征识别分类模型,并对提取到的特征进行分类识别,最终得到识别结果。仿真证明文章研究的算法分类正确率达96%左右,误识率低,运算速度快,更适合用来对果蔬进行分类识别,具有较强的实用性。 In order to further improve the recognition rate of fruits and vegetables products, a classification algorithm based on Sparse Representation Classification(SRC) is presented in this paper. Firstly, the fruits and vegetables images are acquired through image acquisition device, and then those images are preprocessed to be normalized images. After that, through 5 scale and 8 direction Gabor convolution and PCA preproeessing, classification feature is extracted from images. At last, SRC model is used to classify fruits and vegetables products. Simulation results show that our method with 96% of recognition rate and low speed is more suitable for fruits and vegetables products classification.
出处 《信息化研究》 2013年第6期15-18,共4页 INFORMATIZATION RESEARCH
基金 国家自然科学基金项目(No.61231002 No.51075068)
关键词 果蔬识别 稀疏表征 主成分分析(PCA) fruits and vegetable classification sparse representation-based classification principle component analysis
  • 相关文献

参考文献6

  • 1罗承成,李书琴,唐晶磊.基于多示例学习的超市农产品图像识别[J].计算机应用,2012,32(6):1560-1562. 被引量:7
  • 2Rocha A, Hauagge D C, Wainer J, et al. Automatic fruit and vegetable classification from images [J]. Computers and electronics in agriculture, 2010(7).-96- 104.
  • 3Gabor D. Theory ofcommunication[J]. Journal of the insti-tute of electrical engineers, 1946,93(26):429- 459.
  • 4边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 5Wright J, Yang Y A, Ganesh A, et al. Robust face recogni tion via sparse representation[J]. IEEE transactions on pat tern analysis and machine intelligence (PAMI), 2009. 31(2) .. 210 - 227.
  • 6Serre T. Learning a dictionary of shape-components in visu- al cortex: comparison with neurons[D]. Cambridge, MA, March: Humans and machines PhD dissertation, 2006.

二级参考文献12

  • 1戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 2BOLLE R. M, CONNELL J H, HAAS N, et al. Veggie vision: a produce recognition system[ C]// 3rd IEEE Workshop on Applica- tions of Computer Vision. Piscataway: IEEE Press, 1996:244 - 251.
  • 3ROCHA A, HAUAGGE D C, WAINER J, et al. Automatic fruit and vegetable classification from images [ J]. Computers and Elec- tronics in Agriculture, 2010, 70(1) : 96 - 104.
  • 4DIETI?ERICH T G, LATHROP R H, PEREZ T L, et al. Solving the multiple instance problem with axis-parallel rectangles[ J]. Artificial Intelligence, 1997, 89(1): 31-71.
  • 5MARON O, RATAN A L. Muhiple-instance learning for natural scene classification[ C] // Proceedings of the 15th International Con- ference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998:341 -349.
  • 6YANG C. Image database retrieval with multiple-instance learning techniques[ C]// Proceedings of 16th International Conference on Data Engineering. Piscataway: IEEE Press, 2000:81 - 82.
  • 7ZHOU Z H, ZHANG M L, CHEN K J, eta]. A novel bag genera- tor for image database retrieval with muhi-instance learning tech- niques[ C]// Proceedings of the 15th IEEE International Confer- ence on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2003:565-569.
  • 8MARON O. Learning from ambiguity [D]. Boston: Massachusetts Institute of Technology, 1998.
  • 9张俊雄,荀一,李伟.山竹的计算机视觉分级方法[J].农业机械学报,2009,40(11):176-179. 被引量:10
  • 10展慧,李小昱,王为,汪成龙,周竹,黄懿.基于机器视觉的板栗分级检测方法[J].农业工程学报,2010,26(4):327-331. 被引量:75

共引文献72

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部