期刊文献+

冲击孔对层板冷却叶片前缘传热影响的数值研究 被引量:8

Numerical investigation on the influences of impingement holes on heat transfer of leading edge in lamilloy
原文传递
导出
摘要 根据典型涡轮导向叶片型面和边界条件,对简化的层板冷却叶片前缘的流动和传热特性进行数值研究.考察了两种冲击孔与气膜孔和扰流柱的孔阵排布方式、两种冲击孔轴线与靶面的夹角设置方式对叶片前缘换热的影响,计算中采用re-normalization group(RNG)k-ε湍流模型.结果表明:在气膜孔、扰流柱排布一定的条件下,不同冲击孔的模型的冷却流量相差不到1%.冲击孔数目越多和孔径越小的模型的靶面表面传热系数越高;叶片前缘表面的冷却效率越高,提高约2%.在同一种冲击孔孔阵排布方式下,冲击孔轴线和靶面的夹角对流阻和叶片前缘的换热影响不大. According to the typical guide vane shape and the boundary conditions, nu merical investigation was carried out to study the flow and heat transfer characteristics on simplified vane leading edge in lamilloy. Two arrangements of impingement holes, film holes and pinfins, and two axis modes of impingement holes were analyzed, and renormalization group (RNG) ks turbulent model was used. The results show that with the same arrange ment of film holes and pinfins, the models with different impingement holes have less than 1% of cooling flow rate varies. Besides, the model with more impingement holes and smaller diameter of impingement holes can achieve higher heat transfer coefficient and cooling effec tiveness, by about 2%. The angle of impingement holes axis has little influence on heat transfer of leading edge in the same arrangement impingement holes.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2013年第10期2240-2247,共8页 Journal of Aerospace Power
关键词 层板冷却 涡轮叶片前缘 冲击孔 冷却效率 表面传热系数 lamilloy leading edge of turbine vane impingement hole cooling effectiveness heat transfer coefficient
  • 相关文献

参考文献13

  • 1Thakur S,Wright J ,Shyy W. Convective film cooling over a representative turbine blade leading-edge[J]. Interna- tional Journal of Heat and Mass Transfer, 1999,42 ( 12 ) 2269-2285.
  • 2杨帆,朱惠人,李广超.叶片前缘气膜冷却数值模拟[J].机械设计与制造,2007(4):23-25. 被引量:5
  • 3朱惠人,许都纯,郭涛,刘松龄.孔排布局对叶片前缘气膜冷却的影响[J].航空学报,2000,21(5):385-388. 被引量:15
  • 4杨凡,曹辉,郑洪涛,李智明.涡轮静叶前缘气膜冷却数值模拟[J].汽轮机技术,2006,48(4):269-271. 被引量:2
  • 5Nealy D A, Reider S B. Evaluation of laminated porous wall materials for eombustor liner cooling[J]. Journal of Engineering for Power, 1980,102(4) .. 268-276.
  • 6Favaretto C F F,Funazaki K. Application of genetic algo- rithms to design of an internal turbine cooling system[R]. ASME Paper GT 2003-38408,2003.
  • 7Cho H H,Rhee D H. Local heat/mass transfer measure- ment on the effusion plate in impinging/effusion cooling systems[J]. ASME Journal of Turbomaehinery, 2001,123 (3) 601-608.
  • 8Cho H H,Goldstein R J. Total-coverage discrete holes wallcooling[J]. ASME Journal o{ Turbomachinery, 1997, 119 (2) :320-329.
  • 9Funazaki K, Hachiya K. Systematic numerical studies on heat transfer and aerodynamic characteristics of impinge- ment cooling devices combined with pins[R]. ASME Paper 2003-GT-38256,2003.
  • 10郁新华,董志锐,刘松龄,游少坤.层板模型流阻特性的研究[J].推进技术,2000,21(4):47-50. 被引量:14

二级参考文献29

  • 1颜培刚,王松涛,韩万金.涡轮叶栅双排孔气膜冷却数值模拟[J].工程热物理学报,2004,25(5):757-760. 被引量:5
  • 2全栋梁,刘松龄,李江海.层板冷却结构强化换热机理[J].航空动力学报,2004,19(6):860-865. 被引量:17
  • 3[1]Nealy D A, Relder S B. Evaluation of Laminated Porous Wall Material for Combustor Liner Cooling. Transactions of the ASME, Journal of Engineering for Power, 1980, 102: 268~276
  • 4[5]Shih T H. A New K-Eddy-Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation. Computers Fluids, 1995, 24(3)
  • 5[6]Fluent User′s Guide. Lebanon NH: Fluent Inc, 1999
  • 6[7]Chyu M K. Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel. ASME96-GT-201
  • 7何家德,燃气涡轮实验与研究,1999年,12卷,1期,21页
  • 8Chen P H,ASME Paper HTD-Vol.300 ,Heat Transfer in Gas Turbines,1994年
  • 9Saludean M,J Turbomachinery,1994年,116卷,1期,71页
  • 10Funazaki K,Tarukawa Y,Kudo T.Heat Transfer Characteristics of an Integrated Cooling Configuration of Ultra-High Temperature Turbine Blades:Experimental and Numerical Investigations[C].2001-GT-0148,2001.

共引文献48

同被引文献69

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部