期刊文献+

基于渐近松弛的协同优化方法 被引量:2

Asymptotic Relaxation Based Collaborative Optimization
在线阅读 下载PDF
导出
摘要 针对协同优化方法受起始点影响较大、稳定性不足和收敛难度大的问题,定义了耦合一致度来衡量各学科变量间的一致性要求,并提出了基于渐近松弛的协同优化方法(CO-AR).该方法的计算过程分为2个阶段:①根据设定的耦合一致度,确定系统级松弛因子,并计算得到近似全局优化解;②以第1阶段的优化解作为起始点,并选取符合一致性精度要求的松弛因子进行协同优化,求得最终优化解.减速器标准算例结果表明,所提方法能够大大降低对起始点的敏感程度,有效改善协同优化方法的收敛性和稳定性. Collaborative optimization convergence are poor. To solve this (CO) is easily influenced by the initial points, whose stability and problem, the coupling consistency degree was defined to measure the consistency of the variables in different disciplines. The asymptotic relaxation based collaborative optimiza- tion method (CO-AR)was proposed,whose calculation process was divided into two phases. In the first phase, the relaxation factor of the system was computed based on the set coupling consistency degree, and the approximate global optimal solutions was solved, which were adopted as the initial points in the second phase. In the second phase, the relaxation factor was fixed again at a minimum according to the precision demand of the coupling consistency, and the final solutions were obtained. The standard numeral example of the reducer shows that the proposed method can greatly reduce the sensitivity to the initial points and ef fectively improve the convergence and the stability of CO.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第12期1896-1901,1906,共7页 Journal of Shanghai Jiaotong University
基金 陕西省自然科学基金项目(2011JQ6007)
关键词 多学科设计优化 协同优化 松弛 收敛 multidisciplinary design optimization collaborative optimization relaxation convergence
  • 相关文献

参考文献14

  • 1Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design [C]//Proceedings of the 5th AIAA/USAF /NASA / ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City : AIAA, 1994 .. 697-707.
  • 2王振围,陈小前,罗文彩,等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006.
  • 3刘克龙,姚卫星,余雄庆.运用低自由度协同优化的机翼结构气动多学科设计优化[J].航空学报,2007,28(5):1025-1032. 被引量:10
  • 4杨希祥,张为华.基于改进协同优化方法的固体运载火箭多学科设计优化[J].固体火箭技术,2011,34(6):671-676. 被引量:9
  • 5Brian Roth, Ilan Kroo. Enhanced collaborative opti- mization: application to an analytic test problem and aircraft designeR2. Victoria, BC.. AIAA, AIAA- 2008-5841.
  • 6WANG Wei,FAN Wenhui,CHANG Tianqing,YUAN Yuming.Robust Collaborative Optimization Method Based on Dual-response Surface[J].Chinese Journal of Mechanical Engineering,2009,22(2):169-176. 被引量:5
  • 7韩明红,邓家禔.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38. 被引量:34
  • 8De Miguel, Angel Victor. Two decomposition algo- rithms for nonconvex optimization problems with global variables[D]. California.. Stanford University, 2001.
  • 9Alexandrov N M, Robert M L. Analytical computa- tional aspects of collaborative optimization for multi- disciplinary design [J] . AIAA Journal, 2002,40 (2) : 301-309.
  • 10Jang BS, Yang Y S, Jung H S, etal. Managingap proximation models in collaborative optimization[J]Struet Multidisc Optim, 2005,30 : 11-26.

二级参考文献54

共引文献51

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部