期刊文献+

露天矿边坡监测中的小波滤噪与BPANN预测 被引量:5

Wavelet Denoising and BPANN Forecast for Monitoring Slope Deformation in Open Pit
在线阅读 下载PDF
导出
摘要 针对边坡变形量预测难的问题,将小波分析与BP神经网络预测相结合,采用小波变换对边坡变形监测数据进行信噪分离,进而消除观测误差,通过BP神经网络预测模型BPANN对处理后数据进行再处理,对边坡变形量以及变形趋势进行预测。进而提出了一种基于小波变换和BPANN模型对露天矿边坡变形监测数据进行处理分析的方法,并在鞍山某露天矿进行了实际应用。实例结果表明:利用小波去噪与BPANN模型预测的监测点精度达到3 mm,满足二等变形监测的要求,数据处理简便,在露天矿边坡变形监测数据的消噪与预测中具有实际应用价值。 In view of difficulty in slope deformation forecast, a data analysis method was put forward based on the combination of wavelet analysis and BP artificial neural network forecast. Wavelet transform was firstly adopted to do signal-noise separation for slope deformation monitoring data so as to eliminate observation error. Then, BP artificial neural network model (BPANN) was used in post-processing. The slope deformation in open-pit mine and its trend were therefore forecasted. The practical application of this method in an Anshan open-pit mine indicates that wavelet denoising combined with BPANN model can predicts the monitoring point with the precision of 3 mm, up to the requirement for the second-class deformation monitoring. It is of practical value to apply such method into denoising of monitoring data and predication of open-pit slope deformation, due to simplicity of data processing.
出处 《矿冶工程》 CAS CSCD 北大核心 2013年第6期1-5,共5页 Mining and Metallurgical Engineering
基金 国家自然科学基金项目基金(41104104)
关键词 露天矿 小波变换 BPANN(反传人工神经网络) 边坡变形 变形预测 精度分析 open-pit mine wavelet transform BPANN (back propagation artificial neural network ) slope deformation deformation forecast precision analysis
  • 相关文献

参考文献16

  • 1谢振华,陈庆.尾矿坝监测数据分析的RBF神经网络方法[J].金属矿山,2006,35(10):69-70. 被引量:22
  • 2卫建东.现代变形监测技术的发展现状与展望[J].测绘科学,2007,32(6):10-13. 被引量:80
  • 3何秀凤.边坡监测新方法及其应用[M].北京:科学出版社,2007.
  • 4刘志平,何秀凤.稳健时序分析方法及其在边坡监测中的应用[J].测绘科学,2007,32(2):73-74. 被引量:8
  • 5伍琪琳,祝末.基于三次厄密插值的边坡变形监测小波降噪处理[J].公路工程,2011,36(1):16-19. 被引量:2
  • 6Aballe A, Bethencourt M, Botana F J, et al. Using waveletstransform in the analysis of electrochemical noise data[ J]. Electro-chimica Ac- ta, 1999,44(26) :4805-4816.
  • 7黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2002.20-25.
  • 8Sohail A, Watanabe K,Takeuchi S. Runoff Analysis for a Small Wa- tershed of Tono Area Japan by Back Propagation Artificial Neural Net- work with Seasonal Data [J]. Water Resources Management, 2007 (1) :1-22.
  • 9Edwin A. Hern6ndez-Caraballo, Francklin Rivas, Rita M. Avila de Hern6ndez. Evaluation of a generalized regression artificial neural net- work for extending cadmium's working calibration range in graphite furnace atomic absorption spectrometry[ J]. Analytical and Bioanalyti- cal Chemistry, 2005 (3) :788-794.
  • 10Jinwei Gao, Xueye Wang, Xinliang Yu, et al. Calculation of poly- amides melting point by quantum-chemical method and BP artificial neural networks [ J ]. Journal of molecular modeling, 2006 (4) : 513- 521.

二级参考文献52

共引文献245

同被引文献58

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部