期刊文献+

基于NVIDIA GPU的机载SAR实时成像处理算法CUDA设计与实现 被引量:17

Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU
在线阅读 下载PDF
导出
摘要 合成孔径雷达(SAR)成像处理的运算量较大,在基于中央处理器(Central Processing Unit,CPU)的工作站或服务器上一般需要耗费较长的时间,无法满足实时性要求。借助于通用并行计算架构(CUDA)编程架构,该文提出一种基于图形处理器(GPU)的SAR成像处理算法实现方案。该方案解决了GPU显存不足以容纳一景SAR数据时数据处理环节与内存/显存间数据传输环节的并行化问题,并能够支持多GPU设备的并行处理,充分利用了GPU设备的计算资源。在NVIDIA K20C和INTEL E5645上的测试表明,与传统基于GPU的SAR成像处理算法相比,该方案能够达到数十倍的速度提升,显著降低了处理设备的功耗,提高了处理设备的便携性,能够达到每秒约36兆采样点的实时处理速度。 Synthetic Aperture Radar(SAR) image processing requires a considerable amount of computational resources.Traditionally,this task runs on a workstation or a server based on Central Processing Units(CPUs) and is rather time-consuming,making real-time processing of SAR data impossible.Based on Compute Unified Device Architecture(CUDA) technology,a new plan for a SAR imaging algorithm operated on an NVIDIA Graphic Processing Unit(GPU) is proposed.The new proposal makes it possible for the data processing procedure and the CPU/GPU data exchange to execute concurrently,especially when the size of SAR data exceeds the total GPU global memory size.A multi-GPU is suitably supported by the new proposal,and all computational resources are fully exploited.It has been shown by an experiment on an NVIDIA K20C and INTEL E5645 that the proposed solution accelerates SAR data processing by tens of times.Consequently,a GPU based SAR processing system that embeds the proposed solution is much more efficient and portable,thereby making it qualified to be a real-time SAR data processing system.Experiments showed that SAR data can be processed in real-time at a rate of 36 megapixels per second by a K20C when the new solution is implemented.
出处 《雷达学报(中英文)》 CSCD 2013年第4期481-491,共11页 Journal of Radars
基金 国家大科学工程航空遥感系统地面数据综合处理与管理分系统项目资助课题
关键词 SAR 实时成像 图形处理器(GPU) 通用并行计算架构(CUDA) SAR Real-time processing Graphic Processing Unit(GPU) Compute Unified Device Architecture(CUDA)
  • 相关文献

参考文献15

  • 1Cumming I G and Wong F H. Digital Processing of SyntheticAperture Radar Data: Algorithms and Implementation [M].Norwood: Artech House, 2002.
  • 2OpenMP Architecture Review Board. OpenMP applicationprogram interface [OL]. http://www.openmp.CMrg/mp-documents/spec30.pdf, May 2008.
  • 3Snir M, Otto S, Lederman S H, et al" MPI: The CompleteReference[M]. US: The MIT Press, 1996.
  • 4NVIDIA. CUD A Cprogramming guide[OL]. http://docs.nvidia.com/cuda/pdf/CUD A _C_ Programming_Guide.pdf,July 2013.
  • 5NVIDIA. Tesla k20 GPU active accelerator: boardspecification [OL]. http://www.nvidia.cn/content/PDF/kepler/tesla-k20-active-bd-06499-001-v03.pdf. May 2013.
  • 6Intel. Intel Xeon Processor E5645 [OL]. http://ark.mtel.com/zh-cn/products/48768. 2010.
  • 7Yegulalp A F. Fast backprojection algorithm for syntheticaperture radar[C]. Proceedings 1999 IEEE Radar Conference,Waltham, US, 1999: 60-65.
  • 8John Jr. C K. Motion compensation for synthetic apertureradar [J]. IEEE Transaction on Aerospace and ElectronicSystems, 1975,11(3): 338-348.
  • 9MENG Dadi,HU Donghui,DING Chibiao.A New Approach to Airborne High Resolution SAR Motion Compensation for Large Trajectory Deviations[J].Chinese Journal of Electronics,2012,21(4):764-769. 被引量:6
  • 10Liu Bin, Wang Kai-zhi, Liu Xing-zhao, et al" An efficientsignal processor of synthetic aperture radar based on GPU[C].European Conference on Synthetic Aperture Radar,Eurogress, Aachen, Germany, June 2010: 1054-1057.

二级参考文献11

  • 1黄源宝,保铮,周峰.一种新的机载条带式SAR沿航向运动补偿方法[J].电子学报,2005,33(3):459-462. 被引量:24
  • 2Wang Kaizhi.High Resolution SAR Imaging Techniques under Squint Mode[D].Shanghai:Shanghai Jiao Tong University,2007.
  • 3Owens John D,Luebke David,Govindaraju Naga,et al.A Survey of General-Purpose Computation on Graphics Hardware[J].Computer Graphics Forum,2007,26(1):80-113.
  • 4Govindaraju Naga,Gray Jim,Kumar Ritesh,et al.GPUTeraSort:high performance graphics co-processor sorting for Large da-tabase management[C] // International Conference on Management of Data,Chicago:[s.n.] ,2006:325-336.
  • 5Blom M,Follo P.VHF SAR Image Formation Implemented on a GPU[C] // Geoscience and Remote Sensing Symposium,Seoul Korea:[s.n.] ,2005:3352-3356.
  • 6Nickolls John,Buck Ian,Garland Michael,et al.Scalable parallel programming with CUDA[J].International Conference on Computer Graphics and Interactive Techniques,2008,6(2):40-53.
  • 7Vasily Volkov,Brian Kazian.Fitting FFT onto the G80 Architecture[EB/OL].[2008-08-14].http://www.cs.berkeley.edu/? kubitron/courses/cs258-S08/projects/reports/project6-report.pdf.
  • 8Svetlin A,Manavski,Giorgio Valle.CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence align-ment[J].BMC Bioinformatics,2008,9(z2):S10.
  • 9Paul S Heckbert.Fundamentals of Texture Mapping and Image Warping[D].USA:Berkeley,CA,University of California at Berkeley,1989.
  • 10孟大地,丁赤飚.一种用于宽带机载SAR的空变相位误差补偿算法[J].电子与信息学报,2007,29(10):2375-2378. 被引量:6

共引文献16

同被引文献119

  • 1马俊霞,蔡英武,陈惠连.SAR压制式干扰仿真及效果评估[J].信息与电子工程,2004,2(2):109-113. 被引量:10
  • 2傅雄军,高梅国,何媛.一种有效的聚束式合成孔径雷达图像特征提取算法[J].北京理工大学学报,2004,24(7):638-642. 被引量:2
  • 3李勇,朱岱寅,朱兆达.机载合成孔径雷达大斜视高分辨率重叠子孔径成像算法研究[J].电子与信息学报,2006,28(9):1577-1581. 被引量:3
  • 4Sanders J,Kandrot E.GPU高性能编程CUDA实战[M].聂雪军,译.北京:机械工业出版社,2011.
  • 5CUMMING I G, WONG F H. Digital Processing of Synthetic Aperture Radar Data : Algorithms and Imple mentation[M]. Norwood: Artech House, 2005: 57- 58.
  • 6FIENUP J R, MILLER J J. Aberration Correction by Maximizing Generalized Sharpness Metrics[J]. Jour- nal of the Optical Society of America A: Optics, Image Science, and Vision 2003, 20(4):609-620.
  • 7LI X, LIU G, NI J. Autofoeusing of ISAR Image Based on Entropy Minimization[J]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35 (4) : 1240-1252.
  • 8BERIZZI F, CORSINI G, DIANI M, et al. Autofocus of Wide Azimuth Angle SAR Images by Contrast Op- timisation [C] ff Geosciences and Remote Sensing Symposium, Lincoln, NE, USA:IEEE, 1996: 1230- 1232.
  • 9BERIZZI F, MARTORELLA M, CACCIAMANO A, et al. A Contrast-Based Algorithm for Synthetic Range-Profile Motion Compensation[J]. IEEE Trans on Geoscience and Remote Sensing, 2008, 46 (10): 3053-3062.
  • 10ZHANG Lei, LI Haolin, XING Mengdao, et al. In- tegrating Autofocus Techniques with Fast FactorizedBack-Projection for High-Resolution Spotlight SAR Imaging[J]. IEEE Geosciences and Remote Sensing l.etters, 2013, 10(6) :1394-1398.

引证文献17

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部