期刊文献+

高温混凝土储热模块充放热特性数值研究 被引量:6

Numerical Simulation on Charge and Discharge Performance of High Temperature Concrete Thermal Storage Module
原文传递
导出
摘要 储热系统的储热能力直接关系到太阳能热发电的效率和成本。作者对以混凝土作为储热介质,熔融盐作为传热介质的储热模块的充放热特性进行了数值研究,考虑了不同参数对储热模块的影响,得到了储热模块的瞬时温度分布等参数,并对模拟结果进行了对比分析。研究结果表明:提高熔融盐入口流量可有效增强熔融盐与混凝土之间对流换热,从而提高混凝土充放热速率,但是需增加泵功消耗和储热模块长度;随着管径的增加和管间距的减小,熔融盐与混凝土之间换热面积增加,混凝土充放热速率增大,同时所需钢材量增加,从而增大储热成本。 The thermal storage capacity of thermal storage system is directly related to efficiency and cost of solar pow- er generation Numerical simulation on charge and discharge performance of thermal storage module with concrete as ther-mal storage medium and molten salt as heat transfer medium was carried out. The influence of different parameters on the thermal storage module was performed to obtain transient temperature distribution parameters. It was compared and ana- lyzed for the simulation results. The research results show that improving molten salt inlet flow can effectively enhance convective heat transfer between molten salt and concrete, thereby increasing charge and discharge rate of concrete with the need to increase consumption of pump power and length of heat storage module. With the tube diameter increasing and the spacing decreasing, the heat transfer area between molten salt and Concrete increases and charge and discharge rate of concrete also increases. But the thermal storage cost increases with the steel amount increasing.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2013年第12期1-5,共5页 Journal of Wuhan University of Technology
基金 国家科技支撑计划(2012BAA05B05 2012BAA05B06) 武汉市科技攻关(201210321094)
关键词 太阳能 混凝土 熔融盐 储热 solar energy concrete molten salt thermal storage
  • 相关文献

参考文献10

  • 1Tyagi V V, Panwar N L, Rahim N A, et al. Review on Solar Air Heating System with and Without Thermal Energy Stor- age System. Renewable and Sustainable Energy Reviews, 2012,16 (4):2289-2303.
  • 2Antoni G, Marc M, Ingrid M, et al. State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1 -Concepts, Materials and Modellization[J]. Renewable and Sustainable Energy Reviews, 2 010,14 (1) : 31-5 5.
  • 3Oro E, Gil A, Gracia de A, et al. Comparative Life Cycle Assessment of Thermal Energy Storage Systems for Solar Power Plants. Renewable Energy, 2012,44:166-173.
  • 4朱教群,童雨舟,周卫兵,谢冰凉,叶良恒.太阳能发电用高温混凝土储热材料的制备及性能研究[J].节能,2009,28(8):23-25. 被引量:15
  • 5Laing D, Bahl C, Bauer T, et al. High-temperature Solid-media Thermal Energy Storage for Solar Thermal Power Plants. Proceedings of the IEEE, 2012,100(2): 516-524.
  • 6Tamme R, Laing D, Steinmann W D. Advanced Thermal Energy Storage Technology for Parabolic Trough. Journal of Solar Energy Engineering:Transactions of the ASME, 2004,126(2):794-800.
  • 7Laing D, Steinmann W D, Tamme R, et al. Solid Media Thermal Storage for Parabolic Trough Power Plants[J]. Solar En- ergy, 2006,80(10) : 1283-1289.
  • 8Laing D, Lehmann D, Fi M, et al. Test Results of Concrete Thermal Energy Storage for Parabolic Trough Power Plants. Journal of Solar Energy Engineering, 2009,131 (4) : 0410071-0410076.
  • 9孙李平,吴玉庭,马重芳.太阳能高温蓄热熔融盐优选的实验研究[J].太阳能学报,2008,29(9):1092-1095. 被引量:34
  • 10Rainer Tamme, Thomas Bauer,Jochen Busehle, et al. Latent Heat Storage Above 120 C for Applications in the Industrial Process Heat Sector and Solar Power Generation. International Journal of Energy Research,2008(32) : 264-271.

二级参考文献10

共引文献46

同被引文献38

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部