摘要
借助扰动按分布参数分离法及主方程的Kramers-Moyal展开证明,随机熵相应于对最可几路径偏离的偏超量之时间导数与体系对外部扰动的响应性直接相关.该演变速率等价于偏超随机熵产生,并与根据随机位方法提出的随机超熵产生速率等效.对Poisson分布,该量表现为Gibbs超熵产生的等价量.局域平衡假定失效后,化学反应体系的宏观稳定性即决定于这个新的随机量.
By means of both the separation of perturbation in accordance with characteristic parameters and the Kramers-Moyal expansion of master equation, it is shown that the time-derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partial excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential approach. It appears also as an equivalent quantity of the Gibbs' excess entropy production for the Poisson distribution. The macroscopic stability of chemical reaction systems is dominated by this new stochastic quantity when the local equilibrium thermodynamics is broken down.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
1991年第1期101-105,共5页
Chemical Journal of Chinese Universities
基金
国家自然科学基金
关键词
主方程
化学方程
非平衡定态
Macroscopic stability, Nonequllibrlum steady states, Master equation, Kramers-Moyalexpansion, Separation of perturbation in accordance with characteristic parameters