期刊文献+

源信号数动态变化的自适应盲分离算法研究 被引量:1

Research on Adaptive Blind Source Separation with Dynamic Changing Source Number
在线阅读 下载PDF
导出
摘要 针对超定情况下盲源分离算法及其在雷达信号分选中的应用进行了研究。在分析了超定盲源分离自然梯度算法最终不能稳定收敛的原因基础上,构造了一种适合于源信号数动态变化的自适应盲分离算法。新算法不仅克服了已有算法最终不能稳定收敛的缺点,极大地简化了算法的计算量与复杂度,而且在源信号数随机减少或增加时仍能够达到较好的分离效果。仿真结果验证了算法的收敛稳定性与分离有效性。 The over-determined blind source separation algorithm and its application in radar signal sorting are studied. Based on analysis of the reason why the over-determined blind source separation of natural gradient algorithm can' t ultimately converge stably, an adaptive blind separation algorithm suitable for dynamically changing source number is constructed. The new algorithm not only over- comes the shortcoming of the existing algorithm such as eventually not implementing stable convergence,so it greatly simplifies the com- putational complexity of the algorithm, and it can obtain better separation effect when the number of source signals decreased or increa- ses. Simulation results prove the convergence of the algorithm and its effectiveness for blind source separation.
出处 《无线电工程》 2014年第1期20-23,共4页 Radio Engineering
基金 国家自然科学基金资助项目(61174207)
关键词 源信号数 动态变化 自适应 盲源分离 number of source signals dynamic changes self-adaptation blind source separation
  • 相关文献

参考文献11

  • 1HYVARINEN A,KARHUNEN J,OJA E. Independent Component Analysis[M].{H}New York:Wiley,2001.
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:212
  • 3YANG H H,AMARI S. Adaptive On-line Learning Algorithms for Blind Separation:Maximum Entropy and Minimum Mutual Information[J].{H}Neural Computation,1997,(05):1457-1482.
  • 4CICHOCKI A,KARHUNEN J,KASPRZAK W. Neural Networks for Blind Separation with Unkown Number of Sources[J].{H}NEUROCOMPUTING,1999,(01):55-93.
  • 5AMARI S. Nutural Gradient Works Efficiently in Learning[J].{H}Neural Computation,1998,(58):251-276.
  • 6LOU Shun-tian,ZHANG Xian-da. Blind Source Separation for Changing Source Number:A Neural Network Approach with a Variable Structure[A].{H}San Diego,California,USA,2001.
  • 7AMARI S. Natural Gradient Learning for Over-and undercomplete Bases in ICA[J].{H}Neural Computation,1999,(08):1875-1883.
  • 8YE J M,ZHU X L,ZHANG X D. Adaptive Blind Separation with an Unknown Number of Sources[J].{H}Neural Computation,2004,(08):1641-1660.doi:10.1162/089976604774201622.
  • 9AMARI S,CHEN T P,CICHOCKI A. Nonholonomic Orthogonal Learning Algorithm for Blind Source Separation[J].{H}Neural Computation,2000,(06):1463-1484.
  • 10CICHCKI A,AMARI S. Adaptive Blind Signal and Image Processing:Learning Algorithm and Applications[M].{H}New York:Wiley,2002.

二级参考文献55

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献213

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部