期刊文献+

大数据处理框架中基于MDP的任务调度算法 被引量:2

Task Scheduling Algorithm Based on MDP in Big Data Processing Framework
在线阅读 下载PDF
导出
摘要 针对大数据处理框架MapReduce中的任务调度问题,提出一种基于Markov决策过程(Markov Decision Process,MDP)的任务调度算法,通过状态集来描述集群中节点的负载和作业的数据本地性需求,使用状态转移函数表示调度策略对状态的影响,采用值迭代求解算法求取最优策略,实现集群中节点的最优调度.实验结果表明,该算法能够保证数据本地性的同时,减少作业响应时间,提高系统综合性能. A task scheduling algorithm based on Markov decision process is proposed to address the problem of task scheduling in MapReduce framework. The algorithm describes the load of node in cluster and data localization using state space. The state transfer function represents the influence scheduling strategy of the state. The optimal scheduling policy is obtained by solving the MDP using value iteration. The experimental results show that this algorithm can guarantee the data locality, reduce job response time and improve the overall performance of the system.
出处 《深圳职业技术学院学报》 CAS 2014年第1期7-10,共4页 Journal of Shenzhen Polytechnic
基金 广东省自然科学基金项目(S2011040004769) 深圳市科技研发资金项目(JCYJ20120617134831736)
关键词 大数据 MAPREDUCE MARKOV决策过程 任务调度 big data MapReduce Markov decision process task scheduling
  • 相关文献

参考文献7

  • 1李建江,崔健,王聃,严林,黄义双.MapReduce并行编程模型研究综述[J].电子学报,2011,39(11):2635-2642. 被引量:188
  • 2Apache Hadoop [EB/0L]. http://hadoop.apache.org/, 2012 March.
  • 3Zaharia M, Borthakur D, Sarma J S, et al. Job Scheduling for Multi user Mapreduce Clusters [J]. EECS Depart- ment, 2009, 55: 1-16.
  • 4Zaharia M, Borthakur D, Sarma J S, et al. Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling [C]. Proc of the EuroSys, 2010: 265-278.
  • 5宁文瑜,吴庆波,谭郁松.面向MapReduce的自适应延迟调度算法[J].计算机工程与科学,2013,35(3):52-57. 被引量:8
  • 6Alexander L. Strehl and Michael L. Littman. An Empiri- cal Evaluation of Interval Estimation for Markov Decision Processes [C]//The 16th IEEE International on Tools with Artificial Intelligence Conference. Washington DC, USA: IEEE Computer Society, 2004.- 128-135.
  • 7Kaelbling L, Littman M L, Cassandra A R. Planning and acting in partially observable stochastic domains [J]. Artificiallntelligence, 1998, 101 (1/2).- 99 134.

二级参考文献45

  • 1宁焕生,张瑜,刘芳丽,刘文明,渠慎丰.中国物联网信息服务系统研究[J].电子学报,2006,34(B12):2514-2517. 被引量:151
  • 2J Dean,S Ghemawat.MapReduce:Simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 3J L Wagener.High performance fortran[J].Computer Standards & Interfaces,Elsevier,1996,18(4):371-377.
  • 4W Gropp,E Lusk,et al.Using MPI:Portable Parallel Programming with the Message Passing Interface[M].Cambridge:MIT Press,1999.1-350.
  • 5A Geist,A Beguelin,et al.PVM:Parallel Virtual Machine:A Users' Guide and Tutorial for Networked Parallel Computing[M].Cambridge:MIT Press,1995.1-299.
  • 6A Verma,N Zea,et al.Breaking the mapreduce stage barrier .Proc of IEEE International Conference on Cluster Computing .Los Alamitos:IEEE Computer Society,2010.235-244.
  • 7H C Yang,A Dasdan,et al.Map-Reduce-Merge:Simplified relational data processing .Proc of ACM SIGMOD International Conference on Management of Data .New York:ACM,2007.1029-1040.
  • 8S V Valvag,D Johansen.Oivos:Simple and efficient distributed data processing .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2008.113-122.
  • 9Z Vrba,P Halvorsen,et al.Kahn process networks are a flexible alternative to mapreduce .Proc of IEEE International Conference on High Performance Computing and Communications .Piscataway:IEEE,2009.154-162.
  • 10Apache hadoop .http://lucene.apache.org/hadoop/,2010-10-15/2010-12-28.

共引文献194

同被引文献12

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部