期刊文献+

一类Toeplitz三对角方程组的一种分布式并行算法 被引量:3

A Parallel Solver for Certain Toeplitz Tridiagonal Systems on Distributed-Memory Multicomputers
在线阅读 下载PDF
导出
摘要 文中提出一类 Toeplitz三对角方程组的一种分布式并行算法 ,该算法以系数矩阵的分解为基础 ,充分利用了系数矩阵结构的特殊性 ,算法因并行化而引入的冗余计算量非常少 ,算法的通信机制简单 ,通信量仅与处理机台数p有关 ,与方程组规模 n无关 ,算法具有很高的并行效率 ,理论分析和数值试验表明 ,其加速比 Sp(n)→ p(n→ +∞ ) ,此为线性加速比的理想情况 .文中给出了算法在分布存储多计算机系统上的数值试验结果 . The tridiagonal Toeplitz linear systems occur repeatedly in the solution of the implicit finite difference equations derived from linear first order hyperbolic equations, i.e. the Transport equation, under a variety of boundary conditions. Interest in fast direct methods for solving these kind of linear systems has long been a hot spot of research. A parallel algorithm for certain tridiagonal Toeplitz linear systems on distributed memory multicomputers is presented. Derivation of the algorithm is introduced. The algorithm is based on the factorization of the coefficient matrix and the principle of ‘divide and conquer’ in designing parallel algorithms. Authors make full use of the special structure of the coefficient matrix. By using the customary nesting procedure, Horner's formula, authors avoid the necessary of quantities α i, (-α) i(i=2,3,…,m ) and (α m) i, (-α m) i(i=2,3,…,p-1 ). This reduces the algorithm's redundancy computation caused by parallelization. The complexity of the algorithm is analyzed using Log P model. Its communication mechanism is very simple. The communication complexity is only related to p , the number of processors, and not related to n , the size of the matrix. The algorithm's parallel efficiency is high. The analysis of complexity and numerical experiments show that the algorithm's speedup satisfy: S p(n)→p(n→+∞) . This is the best a parallel algorithm can reach. The algorithm has been implemented on parallel computers. The results of numerical experiments about the algorithm on a distributed memory multicomputer are presented in this paper.
出处 《计算机学报》 EI CSCD 北大核心 2001年第2期173-178,共6页 Chinese Journal of Computers
基金 国家自然科学基金!重点项目 (6 99330 30 ) 国家"八六三"高技术研究发展计划! (86 3-30 6 -ZD-0 1-0 3-4 ) 并行与分布处理国家重
关键词 Toeplitz三对角方程组 分布式并行算法 并行计算机 系数矩阵 Toeplitz,tridiagonal system,parallel algorithm,distributed memory,multicomputer
  • 相关文献

参考文献2

二级参考文献1

共引文献12

同被引文献13

  • 1蒋尔雄.线性代数[M].北京:人民教育出版社,1978..
  • 2[2]EVANS D J, YOURSIF W S. The solution of unsymmetric tridiagonal Toeplitz systems by the strides reduction algorithm [J]. Parallel Comput ,1994,20(5): 787-798.
  • 3[4]齐治昌.数值分析及其应用[M].长沙:国防科技大学出版社,2000.
  • 4EVANS D J, YOURSIF W S. The solution of unsymmetric tridiagonal Toeplitz systems by the strides reduction algorithm[J]. Parallel Comput,1994,20(5) :787--798.
  • 5H. H. Wang, A Parallel Nethod for Triagonal Equations. ACM Trans. Math. Software, 7(1981)170-183.
  • 6P. H. Michelse, H. A. Vander Vorst, Data Transport in Wang's Partition Method. Parallel Computing, 7(1988) 87-95.
  • 7Evans D J. On the solution of certain Toeplitz tridiagonal linear systems. SIAM Journal of Numerical Analysis, 17:5(1980) 675-480.
  • 8赵自春 李晓梅.Toeplitz三对角方程组的两种并行算法[A]..第一届全国科学计算并行算法学术会议论文集[C].北京,1989.125-130.
  • 9迟利华,李晓梅.三对角线性方程组的分布式并行算法[J].计算机研究与发展,1998,35(11):1004-1007. 被引量:4
  • 10迟利华,李晓梅.求解三对角线性方程组的双向并行分裂法[J].计算机工程与设计,1999,20(1):49-55. 被引量:3

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部