期刊文献+

定步长压缩感知锥束CT重建算法 被引量:3

Compressing-sensing cone-beam CT reconstruction algorithm of fixed step-size
在线阅读 下载PDF
导出
摘要 针对锥束CT成像系统中投影数据不完全的图像重建问题,提出了一种定步长压缩感知锥束CT重建算法。首先将锥束CT重建问题归结为投影数据均方误差作为数据保真项、全变分作为正则项的无约束优化问题,分析目标函数的Lipschitz连续性;然后近似计算Lipschitz常数,求出梯度下降步长,利用梯度下降法进行重建;最后对CT投影数据采用联合代数重建算法更新重建图像。在每次迭代过程中调整梯度下降步长,提高重建算法的收敛速度。Shepp-Logan模型的无噪声实验结果表明,该算法的重建图像信噪比分别比联合代数重建算法、自适应最速下降-凸集投影算法、BB梯度投影算法的重建图像信噪比高出13.7728 dB、12.8205 dB、7.3580 dB。仿真试验表明该重建算法提高了收敛速度,同时减少了重建图像的相对误差,极大提高了用少量投影数据重建的图像质量。 To solve the problem of image reconstruction of incomplete projection data from cone-beam CT, a fast cone- beam CT reconstruction algorithm was proposed. In this work, the cone-beam CT reconstruction problem was reduced to an unconstrained optimization problem of minimizing an objective function which included a squared error term combined with a sparseness-inducing regularization term. The Lipschitz continuity of the objective function was analyzed and the Lipschitz constant was estimated based on its definition. The gradient descent step-size was calculated by the Lipschitz constant and the reconstructed image was updated by gradient method. Finally simultaneous algebraic reconstruction technique was used to reconstruct image from limited-angle projections and to meet the constraint of the projection data. An adaptive step-size technique was accommodated as so to accelerate the convergence of proposed algorithm. Simulation with noiseless Shepp-Logan shows: In comparison with simultaneous algebraic reconstruction technique, adaptive steepest descent-projection onto convex sets algorithm and gradient-projection Barzilari-Borwein algorithm, the proposed algorithm has higher SNR (Signal-to-Noise Ratio) by 13.7728 dB, 12. 8205 dB, and 7. 358 0 dB respectively. The algorithm has better performance in convergence speed and reconstruction accuracy, and can greatly improve the quality of images reconstructed from few projection data.
出处 《计算机应用》 CSCD 北大核心 2014年第2期553-557,共5页 journal of Computer Applications
基金 国家科技支撑计划项目(2012BAI13B00) 国家重大科学仪器设备开发专项(2011YQ040082)
关键词 压缩感知 定步长 锥束CT 图像重建 compressed sensing fixed stepsize cone-beam CT image reconstruction
  • 相关文献

参考文献14

  • 1LI L. XING Y, CHEN Z,et al. A Curve-filtered FDK (C-FDK) re-construction algorithm for circular cone-beam CT[ J]. Journal of X-Ray Science and Technology, 2011, 19(3): 355 -371.
  • 2SONG B, PARK J, SONG W. A novel, fast, variable step size gra-dient method for solving Simultaneous Algebraic ReconstructionTechnique (SART) type reconstructions: an example application toCBCT[J]. Medical Physics, 2011,38(6): 3444.
  • 3DONOHO D L. Compressed sensing[ J]. IEEE Transactions on In-formation Theory, 2006, 52(4): 1289 - 1306.
  • 4CANDES E J,ROMBERG J K, TAO T. Stable signal recovery fromincomplete and inaccurate measurements [ J]. Communications onPure and Applied Mathematics, 2006, 59(8): 1207 - 1223.
  • 5LAUZIER P T, TANG J, CHEN G-H. Prior image constrained com-pressed sensing: Implementation and performance evaluation [ J].Medical Physics, 2012, 39(1): 66.
  • 6HAGER W W, PHAN D T,ZHANG H. Gradient-based methodsfor sparse recovery[ J]. SIAM Journal on Imaging Sciences, 2011,4(1): 146-165.
  • 7陈涛,李正炜,王建立,王斌,郭爽.应用压缩传感理论的单像素相机成像系统[J].光学精密工程,2012,20(11):2523-2530. 被引量:37
  • 8VOLZ R, CLOSE S. Inverse filtering of radar signals using com-pressed sensing with application to meteors [ J ]. Radio Science,2012, 47(6): RS0N05.
  • 9SIDKY E Y,PAN X. Image reconstruction in circular cone-beamcomputed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): 4777.
  • 10PARK J C, SONG B, KIM J S, et al. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation forapplication to on-line IGRT[ J]. Medical Physics, 2012,39( 3):1207.

二级参考文献28

  • 1杨迪武,邢达,王毅,谭毅,尹邦政.基于代数重建算法的有限角度扫描的光声成像[J].光学学报,2005,25(6):772-776. 被引量:19
  • 2LI C, WANG L V. Photoacoustic tomography and sensing in biomedicine[J]. Physics in Medicine and Biology, 2009, 54(19):R59-R97.
  • 3WANG L V. Prospects of photoaeoustic tomography [J]. Medical Physics, 2008, 35(12): 5758-5767.
  • 4GUO B, LIJ, ZMUDA H, etal.. Mulityfrequency microwave-induced thermal acoustic imaging for breast cancer detection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con- trol, 2007, 54(11): 2000-2010.
  • 5KOLKMAN R G M, HONDEBRINK E, STEEN- BERGEN W, et al.. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anato- my[J]. Physics in Medicine and Biology, 2009, 54(4) : 1035-1046.
  • 6HU S, MASLOV K, WANG L V, et al.. In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy[J]. Medical Physics, 2009, 36(6) : 2320-2323.
  • 7XU M, WANG L V. Pulsed-microwave-induced th- ermoacoustic tomography: Filtered back-projectionin a circular measurement configuration[J]. Medi- cal Physics, 2002, 29(8): 1661-1669.
  • 8ZHANG C, WANG Y. Deconvolution reconstruc- tion of full-view and limited-view photoacoustic tomography., a simulation study[J]. Journal of the Optical Society of America A, 2008, 25 (10):2436-2443.
  • 9PROVOST J, LESAGE F. The application of compressed sensing for photo-acoustic tomography [J]. IEEE Transaction on Medical Imaging, 2009, 28(4) : 585-594.
  • 10CANDES E, ROMBERG J, TAO T. Robust un- certainty principles: exact signal reconstruction from highly incomplete frequency informatio[J].IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

共引文献43

同被引文献35

  • 1Donoho DL. Compressed sensing [ J]. IEEE Trans lnflrm Theory, 2006, 52(4) :1289 - 1306.
  • 2Mallat S, Zhang Z. Matching pursuits with time - ti'equen y dictionaries[ J ]. IEEE Trans Signal Proc, 1993,41 ( 12 ) : 3397 - 3415.
  • 3Tropp JA, Gilbert AC. Signal recovery from random meas- urements via orthugonal matching pursuit [ J ]. IEEE Trans Intorm Theory , 2007,53 (12) :4655 - 4666.
  • 4Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal Matching Pursuit [ J ]. Foundat Computational Mathe, 2009,9 ( 3 ) : 317 - 334.
  • 5Donuho DL,Tsaig Y, Drori 1, et al. Sparse solution of un- derdetermined linear equations by stagewise orthogonal matching pursuit [ R]. Stanford Statistics Technical l/eporl 20O6.
  • 6Needell D, Tropp JA. CoSaMP: lterative signal recovery from incomplete and inaccurate samples [ J ]. Communi ACM, 2010,53(12) :93 - 100.
  • 7Chen SSB, Saunders MA, Donoho DI,. et al. Atomic de- composition by basis pursuit [J ]. SIAM Review,2001,43 ( 1 ) : 129 - 159.
  • 8Seung JK, Koh K, Lustig M, el al. An interior - point method for large - scale 11 - regularized leasl squares [J] IEEE J Selected Topics Signal Pine. 2007,1(4): 606 - 617.
  • 9Figueiredo M,Nowak R,Wright S. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [ J ]. IEEE J, Select Topics Signal Pine: Speeial Issue on Convex Optimization Methods for Signal Processing, 2007,1 ( 04 ) :586 - 598.
  • 10Gilbert, AC,Strauss, MJ,Tropp JA., et al. Algorilhmie linear dimension reduction in the 11 norm tbr sparse vec- tors [ J ]. Comput Res Repository' ,2006 : 11 - 27.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部