摘要
需求及回收品数量和时间的不确定性,导致制造-再制造系统的库存管理非常困难.为控制库存尽可能位于某一合理区间内,在假设库存水平变化由无负跳跃Lévy过程描述条件下,利用更新过程和鞅理论,构建了系统期望折扣总费用模型,并采用交叉熵法确定最优的生产速率和调整阈值.最后,通过仿真实验分析了回收品、需求和系统参数对最优控制策略和期望折扣费用的影响.
The quantity and timing uncertainties in demand and returns make it difficult to manage the inventory of manufacturing-remanufacturing systems. In order to keep the inventory level between reasonable intervals as much as possible, under the assumption that the inventory level process is expressed as a Levy process with no negative jumps, the expected total discounted cost model is established by utilizing renewal process and martingale theorems, subsequently the cross-entropy method is applied to obtain the optimal production rates and adjusting threshold. Numerical results are provided to illustrate the effect of returns, demand and system parameters on the optimal control policy and the expected discounted cost.
出处
《控制与决策》
EI
CSCD
北大核心
2014年第2期292-298,共7页
Control and Decision
基金
国家科技重大专项基金项目(2010ZX04001-161)
国家863计划项目(2012AA041307)
"泰山学者"建设工程专项经费项目
济南市高校自主创新计划项目