期刊文献+

超声调制光学信号的频谱分析 被引量:1

Spectrum Analysis of Ultrasound-Modulated Optical Signal
原文传递
导出
摘要 选择准确、合适的成像信号是提高超声调制光学层析成像(UOT)灵敏度和对比度的关键。利用快速傅里叶变换(FFT)获得了超声调制信号的的频谱图像,其中零频强度I。代表着未被超声调制的光信号的谱强度,而在超声探头频率范围内(0.2~1.8MHz)的谱强度之和表示受超声调制信号的谱强度I。与时域信号相比较,谱强度I对介质的光学性质有较高的灵敏度,但它容易受非靶组织(介质)的影响。而频谱信号的调制深度舰(M2=I1/I。)不易受非靶组织(介质)的影响,有较强的抗干扰性,但它对靶组织(介质)的光学属性的灵敏度低。结果表明,采用超声调制光信号的频谱进行图像处理和重构并不比时域信号更具优势。 The choice of the accurate and proper signal is the key to enhance the sensitivity and contrast of ultrasound-modulated optical tomography (UOT). Fast Fourier transform (FFT) is used in the digital frequency analysis of modulation signal. Spectral intensity of zero frequency (I0) represents the unmodulated light intensity, and the sum total of spectral intensity ( Is ) from 0.2 MHz to 1.8 MHz depended on the frequency range of ultrasonic probe represents the ultrasound-modulated light intensity. Compared with the in-time signal, If has the higher sensitivity to optical properties of media, but it is easy to be influenced by the non-target media. The modulated depth of in-frequency signal (M2 = I1/Io ) is not easy to be influenced by non-target media, but it has low sensitivity to optical properties of the target media. The results indicate that the result of in-frequency signal is not better than the in-time signal for image reconstruction and processing.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第B12期238-243,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61178089)、福建省科技计划重点项目(2011Y0019)、福建省教育厅科技项目(JAl3074)
关键词 光谱学 超声调制 光学层析成像 快速傅里叶变换 谱强度 spectroscopy ultrasonic modulation optical tomography fast Fourier fransform spectral intensity
  • 相关文献

参考文献6

二级参考文献71

  • 1刘树田,徐建东,张岩,李淳飞.透镜组合实现光学分数傅里叶变换[J].光学学报,1995,15(10):1404-1408. 被引量:6
  • 2Tao Lu, Zhiyuan Song, Yixiong Su et al.. Feasibility of photoacoustic tomography for ophthalmology [J]. Chin. Opt. Lett., 2007, 5(8): 475-476.
  • 3W.-F Cheong, S. A. Prahl, A.J. Welch. A review of the optical properties of biological tissue[J]. IEEE J. Quantum Electron, 1990, 26(12) : 2166-2185.
  • 4W. Leutz, G. Maret. Uttrasounic modulation of multiply scattered light[J]. Physica B, 1995, 20(4): 14-19.
  • 5L.-H. Wang. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model [J]. Phys. Rev. Lett., 2001, 87(4): 043903.
  • 6L.-H. Wang. Mechanisms of ultrasonic modulation of multiply scattered coherent light: an Monte Carlo model[J]. Opt. Lett. , 2001, 26(15): 1191-1193.
  • 7H. Li, L. V. Wang. Autocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media[J]. Appl. Opt., 2002, 41(22): 4739-4742.
  • 8Lihong Wang, Xuemei Zhao. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media[J]. Appl. Opt. , 1997, 36(28): 7277-7282.
  • 9H. Li, Cuncheng Weng, Lanqing Xu et al.. Noninvasive method to determine the optical property of biological tissue by ultrasound modulation and diffuse reflection light [C]. SPIE, 2005, 5630:101-104.
  • 10Lili Zhu, Hui Li, Jiali Cai. Propagation of the diffused light modulated by a focused ultrasound in scattering media [C]. SPIE, 2006, 6047: 60470B.

共引文献28

同被引文献12

  • 1S W Hell, R Schmidt, A Egner.Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses [J].Nature Photon, 2009, 3(7): 381-387.
  • 2K Dholakia, P Reece.Optical micromanipulation takes the hold [J].Nano Today, 2006, 1(1): 18-27.
  • 3E McLeod, C B Arnold.Subwavelength direct-write nanopatterning using optically trapped microspheres [J].Nature Nanotech, 2008, 3(7): 413-417.
  • 4S H Simon, A L Moustakas, M Stoytchev, et al..Communication in a disordered world [J].Phys Today, 2001, 54(9): 38-43.
  • 5I M Vellekoop, A P Mosk.Focusing coherent light through opaque strongly scattering media [J].Opt Lett, 2007, 32(16): 2309-2311.
  • 6I M Vellekoop, A P Mosk.Phase control algorithms for focusing light through turbid media [J].Opt Commun, 2008, 281(11): 3071-3080.
  • 7I M Vellekoop, A P Mosk.Universal optimal transmission of light through disordered materials [J].Phys Rev Lett, 2008, 101(12): 120601.
  • 8D B Conkey, A N Brown, A M Caravaca-Aguirre, et al..Genetic algorithm optimization for focusing through turbid media in noisy evironments [J].Opt Express, 2012, 20(5): 4840-4849.
  • 9S M Popoff, G Lerosey, R Carminati, et al..Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media [J].Phys Rev Lett, 2010, 104(10): 100601.
  • 10X P Shao, T F Wu, C M Gao.Simulation on light refocusing through a highly scattering turbid medium using circular Gaussian distribution model [J].Opt Eng, 2013, 52(11): 113104.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部