期刊文献+

浮式海上风力机叶片气动性能的流固耦合分析 被引量:11

The fluid-structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade
在线阅读 下载PDF
导出
摘要 随着深水浮式海上风电场在世界范围内的兴起,浮式平台运动性能对风力机稳定运行及叶片气动载荷影响的研究具有重要意义。基于三维粘性不可压缩Navier-Stokes方程和适用于旋转流场分析的重整化群k-ε(RNG)湍流模型,数值模拟美国可再生能源实验室(NREL)5MW海上风力机的气动性能,并将数值模拟结果与NREL的设计参考数据进行对比分析,较好地验证了该数值模拟方法的有效性。进一步利用滑移网格技术模拟风力机叶片随浮式平台的典型周期性运动,实现浮式风力机叶片与周围流场的复杂非线性流固耦合分析,分别研究浮式平台不同运动幅值和运动周期对风力机叶片气动性能的影响规律,并从物理机理角度进行阐明分析。本文的主要研究成果,将对未来大型深水浮式海上风力机的气动性能分析及浮式平台系统的运动性能设计起到积极的指导作用。 As the development of the deep-water floating offshore wind farm has becoming more and more promising around the world, the study of the motion effect of floating platform on both the steady opera- tion performance of the wind turbine and the aerodynamic loads analysis of the blade is of great impor- tance. Based on three dimensional Navier-Stocks equation and k-e Renormalization Group Method (RNG) turbulence model,which is very suitable for the rotational fluid flow,numerical simulations for the aerodynamic performance of National Renewable Energy Laboratory (NREL) of us 5MW offshore wind turbine blades have been done. The availability of the numerical model has been verified by compa- ring the numerical results with the corresponding design data from NREL. Furthermore, the complex nonlinear fluid-structure interaction between the blades and its surrounding airflow has been successfully investigated by using advanced sliding mesh technique to simulate the typical periodic motion of the floating platform. The effect of different motion amplitudes, and the effect of different motion periods have been studied. As a result, the law of the effects has been clarified in the view of physical mecha- nism. In summary,the main results of this work would play an active role in both the aerodynamic analy- sis of large floating offshore wind turbine and the motion performance design of the supporting floating platform.
出处 《计算力学学报》 CAS CSCD 北大核心 2014年第1期91-95,共5页 Chinese Journal of Computational Mechanics
基金 国家重点基础研究发展计划(2011CB013703) 国家自然科学基金创新研究群体(50921001)资助项目
关键词 浮式海上风力机 气动性能 滑移网格 流固耦合 floating offshore wind turbine aerodynamic performance sliding mesh fluid-structure inter action
  • 相关文献

参考文献13

  • 1Tangler J, David K J. Wind turbine post-stall airfoil performance characteristics guidelines for blade- element momentum methods [ A]. The 43^th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada, 2005.
  • 2Duque E P N, Johnson W, Cortes R, et al. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase Ⅱ Combined Experiment Rotor[C]. AIAA: 2000-0038.
  • 3Chattot J J. Helicoidal vortex model for wind turbine aeroelastie simulation[J]. Computers and Structures, 2007,85: 1072-1079.
  • 4Kasmi A E, Masson C. An extended k- ε model for turbulent flow through horizontal axis wind turbines [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96 : 103-122.
  • 5李田,张继业,李忠继,张卫华.基于Fluent与Simpack的高速列车流固耦合联合仿真[J].计算力学学报,2012,29(5):675-680. 被引量:18
  • 6任年鑫,欧进萍.大型海上风力机尾迹区域风场分析[J].计算力学学报,2012,29(3):327-332. 被引量:24
  • 7Zambrano T, Macready T, Kiceniuk T, et al. Dynamic modeling of deepwater offshore wind turbine struc- tures in gulf of mexico storm conditions[A]. Proceed- ings of OMAE2006 25^th International Conference Hamburg[C]. Germany, 2006.
  • 8Sultani A,Manuel L. Extreme Loads on a Spar Buoy- Supported Floating Offshore Wind Turbine [C]. AIAA: 2010-2738.
  • 9Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW Reference Wind Turbine for Offshore Sys- tem Development[R]. Technical Report NREL/TP- 500-38060 ,February 2009.
  • 10Jonkman J. Dynamics of offshore floating wind tur- bines, model development and verification[J]. Wind Energy, 2009,12(12) :459-492.

二级参考文献22

  • 1高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40. 被引量:117
  • 2王永冠,陈康.横风对高速动车曲线通过性能的影响[J].西南交通大学学报,2005,40(2):224-227. 被引量:23
  • 3任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究[J].铁道学报,2006,28(6):46-50. 被引量:90
  • 4Tangler J, David K J. Wind turbine post-stall airfoil performance characteristics guidelines for blade-ele- ment momentum methods[A]. The 43th AIAA Aero- space Sciences Meeting and Exhibit[C]. Reno, Nevad-a,2005.
  • 5Duque E P N, Johnson W, Cortes R, et al. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II Combined Experiment Rotor[R]. AIAA,2000-0038.
  • 6Kasmi A E, Masson C. An extended k- e model for turbulent flow through horizontal axis wind turbines [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96 : 103-122.
  • 7Ren N X,Ou J P. Aerodynamic interference effect be- tween large wind turbine blade and tower[A]. Com- putational Structural Engineering[C]. 2009.
  • 8Barthelmle R J, Hansen K,Schepers J G, et al. Model- ing and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12:431-444.
  • 9Kusiak A, Song Z. Design of wind farm layout for maximum wind energy capture[J]. Renewable Ener- gy ,2010,35: 685-694.
  • 10Whale J, Papadopoulos K H, et al. A study of the near wake structure of a wind turbine comparing measure- ments from laboratory and full-scale experiments[J]. Solar Energy, 1996,56(6): 621-633.

共引文献40

同被引文献110

引证文献11

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部