期刊文献+

Zerosumfree半环上半线性空间的基 被引量:3

Bases in Semilinear Spaces over Zerosumfree Semirings
在线阅读 下载PDF
导出
摘要 主要讨论了Zerosumfree半环上半线性空间基的基数问题.首先,介绍了半环上不可约有限分解的概念,然后研究了Zerosumfree半环上n维向量半线性空间中基的基数,并给出了基数为n的一系列等价条件,从而部分回答A.Di Nola等在其论文(Fuzzy Sets and Systems,2007,158:1-22.)中提出的开问题. This paper investigates the cardinality of a basis in a semilinear space over a Zerosumfree semiring. First, the notion of irredundant decomposition of elements in a Zerosumfree semiring is defined, then the cardinality of a basis is discussed, and some e- quivalent conditions for the cardinality of each basis to be n are given. The results in this paper partially give an answer to the open problem raised by Di Nola et al. in their work (Algebraic analysis of fuzzy systems, Fuzzy Sets and Systems ,2007,158:1 -22).
作者 罗琳 王学平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期7-11,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11171242) 教育部博士点基金(20105134110002) 四川省青年基金(05ZQ026-003)资助项目
关键词 Zerosumfree半环 半线性空间 基数 Zerosumfree semiring semilinear space cardinality of a basis
  • 相关文献

参考文献20

  • 1Cuninghame-Green R A,Butovic P. Bases in max-algebra[J].{H}Linear Algebra and its Applications,2004.107-120.
  • 2Gregory D A,Pullman N J. Semiring rank:Boolean rank and nonnegative rank factorization[J].J Combin Info Syst Sci,1983,(3):223-233.
  • 3Ghosh S. Matrices over semirings[J].Information and Sciences,1996.221-230.
  • 4Beasley L B,Lee S G. Linear operations strongly preserving r-potent matrices over semirings[J].{H}Linear Algebra and its Applications,1992.589-599.
  • 5M inoux M. Bideterminants arborescences and extension of the matrix-tree theorem to semirings[J].{H}DISCRETE MATHEMATICS,1997.191-200.
  • 6Poplin P L,Hartwig R E. Determinantal identities over commutative semirings[J].{H}Linear Algebra and its Applications,2004.99-132.
  • 7Reutenauer C,Straubing H. Inversions of matrices over a commutative semiring[J].{H}Journal of Algebra,1984.350-360.
  • 8Di Nola A,Lettieri A,Perfilieva I. Algebraic analysis of fuzzy systems[J].{H}Fuzzy Sets and Systems,2007.l-22.
  • 9Tan Y J. On invertible matrices over antirings[J].{H}Linear Algebra and its Applications,2007.428-444.
  • 10Golan J S. Semirings and Their Applications[M].Dordrccht:Kluwer Academic Publishers,1999.

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部