期刊文献+

A comparison on the phytoremediation ability of triazophos by different macrophytes 被引量:2

A comparison on the phytoremediation ability of triazophos by different macrophytes
原文传递
导出
摘要 The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity (RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63μg/(g fw.day), respectively. The highest values of BCF occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies. The strategy of choosing suitable plants should receive great performance in phytoremediation of surface water polluted by triazophos (O,O-diethyl-O-(1-phenyl- 1,2,4-triazol-3-base) sulfur phosphate, TAP), which is an organophosphorus pesticide widespread applied for agriculture in China and moderately toxic to higher animal and fish. The tolerance, uptake, transformation and removal of TAP by twelve species of macrophytes were examined in a hydroponic system and a comprehensive score (CS) of five parameters (relative growth rate (RGR), biomass, root/shoot ratio, removal capacity (RC), and bio-concentration factor (BCF)) by factor analysis was employed to screen the potential macrophyte species for TAP phytoremediation. The results showed that Thalia dealbata, Cyperus alternifolius, Canna indica and Acorus calamus had higher RGR values, indicating these four species having stronger growth capacity under TAP stress. The higher RC loading in Iris pseudacorus and Cyperus rotundus were 42.11 and 24.63μg/(g fw.day), respectively. The highest values of BCF occurred in A. calamus (1.17), and TF occurred in Eichhornia crassipes (2.14). Biomass and root/shoot ratio of plant showed significant positive correlation with first-order kinetic constant of TAP removal in the hydroponic system, indicating that plant biomass and root system play important roles in remediation of TAP. Five plant species including C. alternifolius, A. calamus, T. dealbata, C. indica and Typha orientalis, which owned higher CS, would be potential species for TAP phytoremediation of contaminated water bodies.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期315-322,共8页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 20877093, 51278355)
关键词 pesticide removal capacity relative growth rate bio-concentration factor transfer factor root/shoot ratio factor analysis pesticide removal capacity relative growth rate bio-concentration factor transfer factor root/shoot ratio factor analysis
  • 相关文献

参考文献5

二级参考文献67

共引文献71

同被引文献65

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部