期刊文献+

多策略中文微博细粒度情绪分析研究 被引量:23

Multi-strategy Approach for Fine-Grained Sentiment Analysis of Chinese Microblog
在线阅读 下载PDF
导出
摘要 针对中文微博用户的情绪分析问题,提出一种基于多策略融合的细粒度情绪分析方法。首先采用朴素贝叶斯算法对微博的有无情绪分类问题进行研究,然后构建有情绪微博的21维特征向量,最后采用SVM和KNN算法对微博进行细粒度情绪分析。以新浪微博作为实验对象,结果表明多策略集成方法好于单一分类算法。在多策略集成方法中,"NB+SVM"方法略优于"NB+KNN"方法。 Fine-grained sentiment analysis of Chinese microblog is investigated and a method of multi-strategy fusion is proposed. Firstly, the authors apply naive Bayesian to identify sentiment or non-sentiment about microblog. Secondly, based on emotion ontology, a method for how to form 21 sentiment features vectors of microblog is presented. At last, fine-grained sentiment of microblog is classified based on SVM and KNN respectively. Experiment results show that multi-strategy fusion is better than a single method, in addition, "NB + SVM" strategy is better than "NB + KNN" strategy.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期67-72,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 湖南省自然科学基金项目(13JJ4076 11JJ6047) 湖南省教育厅优秀青年项目(13B101) 衡阳市科技计划项目(2012KJ9)资助
关键词 细粒度情绪分析 中文微博 朴素贝叶斯 SVM KNN fine-grained sentiment analysis Chinese microblog naive Bayesian support vector machine (SVM) K Nearest Neighbor (KNN)
  • 相关文献

参考文献15

  • 1Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models // Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. Washington, DC: The AAAI Press, 2010:130-137.
  • 2Jansen B J, Zhang Mimi. Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2169-2188.
  • 3Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data //Proceedings of the 23rd International Conference on Computational Linguistics. Beijing: Tsinghua University Press, 2010:36-44.
  • 4Davidov D, Tsur O, Rappoport A. Enhanced sentiment learning using Twitter Hashtags and smileys // Proceedings of the 23rd International Conference on Computational Linguistics. Beijing: Tsinghua Univer- sity Press, 2010:241-249.
  • 5Si Jianfeng, Mukherjee A, Liu B, et al. Exploiting topic based Twitter sentiment for stock//Proceedings of the 50st Annual Meeting of the Association for Computational Linguistics. Jeju Island, 2013:115-120.
  • 6周胜臣,瞿文婷,石英子,施询之,孙韵辰.中文微博情感分析研究综述[J].计算机应用与软件,2013,30(3):161-164. 被引量:81
  • 7谢丽星,周明,孙茂松.基于层次结构的多策略中文微博情感分析和特征抽取[J].中文信息学报,2012,26(1):73-83. 被引量:199
  • 8刘志明,刘鲁.基于机器学习的中文微博情感分类实证研究[J].计算机工程与应用,2012,48(1):1-4. 被引量:125
  • 9韩忠明,张玉沙,张慧,万月亮,黄今慧.有效的中文微博短文本倾向性分类算法[J].计算机应用与软件,2012,29(10):89-93. 被引量:39
  • 10林江豪,阳爱民,周咏梅,陈锦,蔡泽键.一种基于朴素贝叶斯的微博情感分类[J].计算机工程与科学,2012,34(9):160-165. 被引量:44

二级参考文献102

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 4Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 5M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 6H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 7Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 8Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 9E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.
  • 10Glance, N. , M. Hurst, K. Nigam, et al. 2005. Deri- ving marketing intelligence from online discussion [C]//SIGKDD'05 : 419-428.

共引文献968

同被引文献263

引证文献23

二级引证文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部