期刊文献+

适用于BPSK系统的抗跳周LDPC译码算法 被引量:3

Anti-Cycle-Slip LDPC Decoding Algorithm for BPSK System
在线阅读 下载PDF
导出
摘要 采用BPSK调制方式的系统发生跳周现象后,输入LDPC译码器的信息序列符号与原序列符号相反,导致译码器失效。提出了基于置信传播算法的抗跳周LDPC译码算法。该算法通过增加一次迭代译码的运算量,根据校验节点与变量节点之间传递的信息对初始似然比信息进行修正,可以消除跳周对译码器的影响。仿真结果表明在不发生跳周时,抗跳周LDPC译码算法与传统译码算法性能相同,即抗跳周LDPC译码算法对初始似然比信息的修正不会导致译码性能损失。在跳周发生时,传统译码算法失效。对校验节点奇数度的码字采用抗跳周译码算法可以完全克服跳周带来的影响,译码性能与无跳周发生时相同。 When cycle-slip occurs in BPSK modulation system, sign of information sequence which is input of LDPC decoder is opposite to the original one. This problem will lead to decoder failure. Anti-cycle-slip LDPC decoding algorithm based on belief propagation was proposed. Modified algorithm modifies initial likelihood ratio information according to information between check nodes and variable nodes by an iterative decoding computation. Modified algorithm can eliminate the influence of cycle-slip and ensure normal function of LDPC decoder. Simulation result shows that modified decoding algorithm has the same performance with traditional decoding algorithm without cycle-slip, which means that the modification of initial likelihood ratio doesn't lead to decoding performance loss. When cycle-slip happens, traditional decoding algorithm fails. Decoding LDPC of odd check node degree by anti-cycle-slip algorithm will overcome the impact of cycle-slip totally. Modified algorithm has the same decoding performance no mater cycle-slip happens.
出处 《电信科学》 北大核心 2014年第1期63-66,82,共5页 Telecommunications Science
基金 国家自然科学基金资助项目(No.41175033) 江苏高校优势学科建设工程资助项目
关键词 低密度奇偶校验码 跳周 二相相移键控 置信传播算法 low-density parity-check code, cycle-slip, BPSK, belief propagation decoding
  • 相关文献

参考文献13

二级参考文献69

  • 1郑贺,陆佩忠,胡捍英.基于二分图的乘积码迭代译码算法[J].电子与信息学报,2006,28(1):86-91. 被引量:2
  • 2郑大春,项海格.彻底消除相位检测中的±π弧度跳变问题[J].电子测量技术,1996,19(4):1-5. 被引量:2
  • 3MacKay D J. Good error-correcting codes based on very sparse matrices [J]. IEEE Transactions on Information Theory, 1999, 45(2): 399-431.
  • 4Oh W and Cheun K. Joint decoding and carrier phase recovery algorithm for turbo codes [J]. IEEE Communication Letters, 2001, 5(9): 375-377.
  • 5Zhang L and Burr A G. Iterative carrier recovery suited to turbo-coded systems [J]. IEEE Transactions on Wireless Communications, 2004, 3(6): 2267-2276.
  • 6Lottici V and Luise M. Embedding carrier phase into iterative decoding of turbo-coded linear modulations [J]. IEEE Transactions on Communications, 2004, 52(4): 661-669.
  • 7Valles E L, Wesel R D, Villasenor J D, and Jones C R. Carrier and timing synchronization of BPSK via LDPC code feedback [C]. Proc. 40th Asilomar Confere, nce on Signal, System and Computers, Pacific Grove, CA, 2006: 2177-2181.
  • 8Mielczarek B and Svensson A. Timing error recovery in turbo-coded systems on AWGN channels [J]. IEEE Transactions on Communications, 2002, 50(10): 1584-1592.
  • 9CCSDS. Low density parity check codes for use in near-earth and deep space [S]. Washington, DC, USA: the Consultative Committee for Space Data Systems. 2007: (3-1)-(3-11).
  • 10Jeffrey C L, James A R, Margaret H W, and Paul E W. Convergence properties of the Nelder-Mead simplex method in low dimensions [J]. SIAM Journal of Optimization, 1998, 9(1): 112-147.

共引文献36

同被引文献29

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部