期刊文献+

海上张力腿浮式风机整体结构动态特性研究 被引量:6

Study on dynamic characteristic of overall structure of offshore floating wind turbine on a tension leg platform
在线阅读 下载PDF
导出
摘要 随着大型海上风电场的建设逐步由浅水海域向深水海域发展,传统固定式基础结构已不能满足海上风机工作性能要求,研究漂浮式风机已成为各国开发海上风能的热点工作。文章采用风机正向设计软件SWT对海上张力腿浮式风机整体结构进行了模态分析,得到浮式风机整体结构的动态特性。由分析结果可知,浮式基础的振动对上部塔架有连带作用;浮式基础低阶振型主要表现为横荡、纵荡、首摇、纵摇、横摇和垂荡,高阶振型表现为振荡、摇动和部件振动的复合;浮式风机自振频率和主要海浪谱频率以及风机叶片旋转频率不产生共振。 With the construction of large-scale offshore wind farm gradually from shallow water to deep water, the study of offshore floating wind turbine has become a hot job to develop offshore wind energy in each country because traditional fixed infrastructure can not meet the performance requirements of offshore wind turbine work. The forward design software SWT are used to do modal analysis of offshore floating wind turbine overall structure on a tension leg platform and to obtain its dynamic characteristics in the paper. As it is showed that the mode shapes of the platform are related to the tower on it ; and low-level modes of floating basis mainly are sway, surge, yaw, roll, pitch and heave, high-level modes performances are shaking, vibration and composite of vibrant parts ; floating wind turbine vibration frequency does not resonate the wave spectrum frequency and wind turbine blade rotation frequency.
作者 卫涛 李良碧
出处 《可再生能源》 CAS 北大核心 2014年第2期196-200,共5页 Renewable Energy Resources
基金 2011年江苏省产学研前瞻性联合研究项目 江苏省2012年度普通高校研究生科研创新计划项目(CXLX12_0696)
关键词 海上风电 张力腿平台 浮式风机 动态特性 offshore wind power tension leg platform floating wind turbine dynamic characteristic
  • 相关文献

参考文献4

二级参考文献30

  • 1Fulto G B,Malcolm D J,Elwany H,et al.Semi-submersible platform and anchor foundation systems for wind turbine support[R].Concept Marine Associates Inc Long Beach,Californiam,2007.
  • 2Kareem A,Zhou Y.Gust loading factor-past,present and future[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,91(12-15):1301-1328.
  • 3Mroz A,Holnicki-Szulc J,Karna T,et al.Mitigation of ice loading on off-shore wind turbines:Feasibility study of a semiactive solution[J].Computers and Structures,2008,86(3-5):217-226.
  • 4Bazeos N,Hatzigeorgiou G D,Hondros D,et al.Static,seismic and stability analyses of a prototype wind turbine steel tower[J].Engineering Structures,2002,24(8):1015-1025.
  • 5world Wind Energy Association.wofJd Wind Energy Report 2009[M].Istanbul,Turkey:WWEA Head Office,2010:9.
  • 6Heronemus W E.Pollution-Free Energy From Offshore Winds[C] //Proceedings of Annual Conference and Exposition Marine Technology Society.Washington D C:Marine Technology Society,1972.
  • 7Tong K C,Ouarton D C,Standing R.Float-a Floating Offshore Wind Turbine System in Wind Energy Conversion[C] //Proceeding of the BWEA Wind Energy Conference.York,England:1993:407-413.
  • 8Barltrop N.Multiple unit floating offshore wind farm(MUFOW)[J].Wind Engineering,1993,17(4):183-188.
  • 9Henderson A R,Bulder B,Huijsmans R,et al.Feasibility study of floating windfarms in shallow offshore sites[J].Wind Engineering,2003,27(5):405-418.
  • 10Manabe H,Uehiro T,Utiyama M,et al.Development of the floating structure for the Sailing-type Offshore Wind Farm[C].//Proceeding of the OCEANS 2008 MTS/IEEE Kobe Techno-Ocean.Kobe,Japan:IEEE,2008:1361-1364.

共引文献51

同被引文献40

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部