期刊文献+

代数双曲B样条基的几乎严格全正性 被引量:1

Almost Strictly Total Positivity of AH B-Spline Bases
在线阅读 下载PDF
导出
摘要 样条基的几乎严格全正性和曲线插值适定性关系密切,是几何造型中一个基本且重要的问题.文中证明了代数双曲B样条基具有几乎严格全正性:首先引入代数双曲B样条函数,通过嵌入节点算法推导出函数的零点数和变差数之间的关系;进一步,利用数学归纳法证明了该基具有几乎严格全正性.文中的证明方法直观且具有几何性,为造型中使用代数双曲B样条基奠定了更为完备的理论基础. Almost strictly total positivity is highly related with the poisedness of curve interpolation problem. It is living a basic status in the bases theory, A geometrical approach is proposed to prove the collection matrices of AH B-spline bases are almost strictly totally positive matrices. Firstly, AH B-spline function is introduced. Using knot inserted algorithm, the relationship between the number of zero points and the number of coefficient variations can be deduced. Finally, using mathematical induction, almost strictly total positivity of AH B-spline bases can be proved. The approach is intuitive and geometrical.
机构地区 浙江大学数学系
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第2期258-262,271,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61272300 60933008)
关键词 嵌入节点算法 几乎严格全正性 系数变差 代数双曲B样条基 knot inserted algorithm almost strictly total positivity coefficient variation AH B-spline bases
  • 相关文献

参考文献3

二级参考文献21

  • 1江平,邬弘毅.Wang-Ball基函数的对偶基及其应用[J].计算机辅助设计与图形学学报,2004,16(4):454-458. 被引量:8
  • 2HUANGYu WANGGuozhao.Constructing a quasi-Legendre basis based on the C-Bézier basis[J].Progress in Natural Science:Materials International,2005,15(6):559-563. 被引量:5
  • 3林上华,汪国昭.C-曲线定义区间的扩展[J].计算机辅助设计与图形学学报,2005,17(10):2281-2285. 被引量:10
  • 4陈文喻,曹娟,汪国昭.Pythagorean-Hodograph C-曲线[J].计算机辅助设计与图形学学报,2007,19(7):822-827. 被引量:4
  • 5王国瑾.高次Ball曲线及其几何性质[J].高校应用数学学报,1987,2(1):126-140.
  • 6Ball A A. Consurf part 1: Introduction of conic lofting title [J ].Computer-Aided Design, 1974, 6(4): 243~249
  • 7Ball A A. Consurf part 2: Description of the algorithm [J].Computer-Aided Design, 1975, 7(4): 237~242
  • 8Said H B. Generalized Ball curve and its recursive algorithm[J]. ACM Transactions on Graphics, 1989, 8(4): 360~371
  • 9Goodman T N T, Said H B. Shape preserving properties of the generalized Ball basis [J]. Computer Aided Geometric Design,1991, 8(2): 115~ 121
  • 10Hu S M, Wang G Z, Jin T G. Properties of two types of generalized Ball curves [J ]. Computer-Aided Design, 1996, 28(2): 125~ 133

共引文献16

同被引文献10

  • 1Sederberg T M, ZhengJ M, Bakenov A, et al. T-splines and T-NVRCCs[J]. ACM Transactions on Graphics, 2003, 22(3): 477-484.
  • 2Sederberg T W, Cardon D L, Finnigan G T, et al. T-spline sim?plification and local refinement[J]. ACM Transactions on Graphics, 2004, 23(3): 276-283.
  • 3Bazilevs Y, Calo V M, CottrellJ A, et at. Isogeometric analysis using T-splines[J]. Computer Methods in Applied Mechanics and Engineering, 2010,199(5-8): 229-263.
  • 4Xu G, Mourrain B, Duvigneau R, et al. Parameterization of computational domain in isogeornetric analysis: methods and comparison[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(23/24): 2021-2031.
  • 5Xu G, Mourrain B, Duvigneau R, et al. Analysis-suitable vol?ume parameterization of multi-block computational domain in isogeometric applications[J]. Computer-Aided Design, 2013, 45(2): 395-404.
  • 6Wang G Z, Chen Q Y, Zhou M H. NUAT B-spline curves[J]. Computer Aided Geometric Design, 2004, 21(2): 193-205.
  • 7Li YJ, Wang G Z. Two kinds of B-basis of the algebraic hy?perbolic space[J].Journal of Zhejiang University Science A, 2005,6(7): 750-759.
  • 8Lii Y G, Wang G Z, Yang X N. Uniform hyperbolic polynomial B-spline curves[J]. Computer Aided Geometric Design, 2002, 19(6): 379-393.
  • 9Shen W Q, Wang G Z. Changeable degree spline basis func?tions[J].Journal of Computational and Applied Mathematics, 2010,234(8): 2516-2529.
  • 10Shen W Q, Wang G Z, Yin P. Explicit representations of changeable degree spline basis functions[J].Journal of Com?putational and Applied Mathematics, 2013, 238: 39-50.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部