期刊文献+

汽车用2219铝合金搅拌摩擦焊组织性能研究及仿真分析 被引量:7

Numerical Simulation and Study on Microstructure and Properties of Friction Stir Welding for Aluminum Alloy
在线阅读 下载PDF
导出
摘要 采用搅拌摩擦焊对6mm厚汽车用2219铝合金进行焊接,研究了其焊接接头的组织与性能,并对其焊接过程进行了数值模拟。结果表明,焊核区的晶粒形态为细密微小的等轴晶,热机影响区的晶粒发生了较大的弯曲和变形,热影响区的微观组织粗大;T1沉淀相在热机影响区和热影响区内发生溶解并粗化,热机影响区的位错结构比焊核区和热影响区较为密集;焊接接头的硬度呈”W”形分布,焊核区和热机影响区的整体硬度范围在51~66HV.热机影响区与热影响区的过渡区域的硬度值最低,为51HV;纵向残余应力的分布是明显的双峰特征.在靠近焊缝中心线的附沂丰萼表瑚为柿廊力爵大佰存执影响庆的沩缘为147MPa。 2219 aluminum alloy with thickness of 6 mm was welded by friction stir welding. The microstructure and hardness were studied. The welding process was simulated. The results show that the microstructure of nugget zone is tiny grain of fine equiaxed, and the grains of thermo-mechanically affected zone are greatly bending and deformation while the grains of heat-affected zone is thick and large. T1 precipitates in the heat-affected zone and thermo-mechanically affected zone were dissolved and coarsening occurs. The dislocation structure ofthermo-mechanically affected zone is more intensive than the heat-affected zone. The distribution of the welded joints hardness is "W"-shaped. The hardness of weld nugget area and the thermo-mechanically affected zone ranges is 51-66 HV, the minimum hardness is in the transition region of heat-affected zone and thermo-mechanically affected zone is 51 HV. The distribution of longitudinal residual stress is bimodal characteristics evident while in the near vicinity of the weld centerline is mainly for tensile stress. The maximum value at the edge of the heat-affected zone is 147 MPa.
作者 王金萍
机构地区 淄博职业学院
出处 《热加工工艺》 CSCD 北大核心 2014年第3期196-198,共3页 Hot Working Technology
关键词 铝合金 搅拌摩擦焊 微观组织 硬度 数值模拟 aluminum alloy friction stir welding microstructure hardness numerical simulation
  • 相关文献

参考文献5

二级参考文献37

共引文献62

同被引文献34

  • 1刘劲松,张士宏,曾元松,李志强,任丽梅.网格式整体壁板增量成形有限元模拟[J].材料科学与工艺,2004,12(5):515-517. 被引量:23
  • 2徐崇义,李念奎.2×××系铝合金强韧化的研究与发展[J].轻合金加工技术,2005,33(8):13-17. 被引量:39
  • 3姜年祥,刘劲松,曾元松,邓子玉,张海渠,张士宏.网格式整体壁板自适应增量压弯预测[J].沈阳理工大学学报,2006,25(3):15-18. 被引量:8
  • 4Jiang H, Browning R,Fincher J A, et al. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins[J]. Applied Surface Science, 2008, 254 (15): 4494-4499.
  • 5Chahboun A, Coratger R, Ajustron F, et al. Comparative study of micro and ultra filtration membranes using STM, AFM, and SEM techniques[J]. Ultramicroscopy, 1992,41(1-3): 235-244.
  • 6Misra R D K, Hadal R, Duncan S J. Surface damage behavior during scratch deformation of mineral reinforced polymer composites[J]. Acta Materialia, 2004,52(14): 4363-4376.
  • 7Futami T,Ohira M, Muto H, et al. Contact/scratch-induced surface deformation and damage of copper-graphite particulate composites[J]. Carbon, 2009, 47(11): 2742-2751.
  • 8Lee H, Chen Y, Claisse A, et al. Finite element simulation of hot nanoindentation in vacuum[J]. Experimental Mechanics, 2013,53(7):1201-1211.
  • 9Wan L, Hu Z, Wu S, et al. Mechanical properties and fatigue behavior ofvacuum-assist dic cast AIMgSiMn alloy[J]. Materials Science and Engineering: A, 2013,576:252-258.
  • 10Clcary P W. Extension of SPH to prexiict feeding, freezing and defect creation in low pressure dic casting [J]. Applied Mathematical Modelling, 2010,34:3189-320 I.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部