期刊文献+

基于改进多目标进化算法的温室环境优化控制 被引量:21

Improved multi-objective evolutionary algorithm for optimization control in greenhouse environment
在线阅读 下载PDF
导出
摘要 该文围绕温室环境控制问题,以温湿度2个主要环境因子为研究对象,建立了温室环境动态模型。设计1种基于改进的非支配排序多目标进化算法(modified non-dominated sorting evolutionary algorithm,MNSEA-II)的双比例积分微分(proportional integral derivative,PID)控制器的多输入、输出温室控制系统,以误差平方矩的积分型(integrated time square error,ITSE)为性能指标,使用多目标进化算法对其确立的目标函数进行寻优,求出Pareto最优解,进而对PID控制器的参数进行整定,使系统获得良好的控制性能。本文以Matlab/Simulink为仿真环境,对此温室控制系统进行了仿真研究。结果表明了温室模型的合理性和多目标进化算法优化的PID控制方法的有效性。 A greenhouse environment control system plays a decisive role in greenhouse production processes and is a complex system to control. This paper provides an overview of a greenhouse control system and control technologies. We investigated the issue of a greenhouse climate control system based on temperature and humidity, and formulated a greenhouse climate dynamic model. The control strategy was presented for the dynamic model made use of conventional Proportional Integral and Derivative (PID) control algorithms in which it combined with an modified multi-objective evolutionary algorithm (MNSEA-II) based on NSGA-II. In MNSEA-II, mixed mutation strategy and local search strategy were utilized to tune two PID controller parameters, and the integrated time square error (ITSE) was considered as one of performance criteria. The mixed mutation strategy based on game theory could utilize adaptively the advantages of a different mutation operator to maintain the globe search capacity of population for a diversity of Pareto solutions, and the local search strategy could speed the convergence of algorithms to achieve more precise solutions. The mixed mutation strategy and the local search strategy could obtain an equilibrium between the diversity and precision of Pareto solutions. An evolutionary optimization process was employed to approximate the set of Pareto solutions, which was used to tune PID controller parameters to achieve good control performance. The tuning scheme has been tested for greenhouse climate control by minimizing ITSE and control increment or rate in a simulation system. Simulation results showed the effectiveness and usability of the proposed method for step responses. The obtained gains were applied in PID controllers and could achieve good control performance such as small overshoot, fast settling time, and less rise time and steady state error. The proposed optimization method offers an effective way to implement simple but robust solutions providing a good reference tracking performance in a closed loop, and the non-dominated Pareto optimal solutions have better distribution and faster convergence at the same time.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2014年第5期131-137,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 黑龙江省教育厅科技项目(12521038) 教育部春晖计划(Z2012074) 黑龙江省留学回国人员科技项目(2011297)
关键词 温室 环境工程 优化 PID控制 进化算法 多目标优化 PARETO最优解 greenhouses environmental engineering optimization PID control evolutionary algorithm multi-objective optimization Pareto optimal solution
  • 相关文献

参考文献30

  • 1秦琳琳,吴刚.温室小气候环境建模与控制的现状及展望[J].自动化博览,2010,27(2):58-60. 被引量:13
  • 2杜尚丰,徐立鸿,马程伟,康孟珍,蔚瑞华,曲梅,高丽红,董乔雪,陈端生.可控环境生产系统建模、仿真与控制研究进展[J].中国科学:信息科学,2010,40(S1):54-70. 被引量:17
  • 3Coelho J P,de Moura Oliveira P B,Cunha J B.Greenhouse air temperature predictive control using theparticle swarm optimisation algorithm[J].Computers andElectronics in Agriculture,2005,49(3):330-344.
  • 4Blasco X,Martínez M,Herrero J M,et al.Model-basedpredictive control of greenhouse climate for reducingenergy and water consumption[J].Computers andElectronics in Agriculture,2007,55(1):49-70.
  • 5Speetjens S L,Stigter J D,Van Straten G.Towards anadaptive model for greenhouse control[J].Computers andElectronics in Agriculture,2009,67(1):1-8.
  • 6Pasgianos G D,Arvanitis K G,Polycarpou P,et al.Anonlinear feedback technique for greenhouseenvironmental control[J].Computers and Electronics inAgriculture,2003,40(1):153-177.
  • 7Bennis N,Duplaix J,Enéa G,et al.Greenhouse climatemodelling and robust control[J].Computers andElectronics in Agriculture,2008,61(2):96-107.
  • 8Pucheta J A,Schugurensky C,Fullana R,et al.Optimalgreenhouse control of tomato-seedling crops[J].Computersand Electronics in Agriculture,2006,50(1):70-82.
  • 9李迎霞,杜尚丰.中国温室环境智能控制算法研究进展[J].农业工程学报,2004,20(2):267-272. 被引量:45
  • 10王威,杨平.智能PID控制方法的研究现状及应用展望[J].自动化仪表,2008,29(10):1-3. 被引量:54

二级参考文献214

共引文献395

同被引文献363

引证文献21

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部