期刊文献+

数字全息显微术用于生物细胞相位重构与补偿的研究 被引量:7

Phase Reconstruction and Compensation of Biological Cell with Digital Holographic Microscopy
原文传递
导出
摘要 讨论了数字全息显微术(DHM)相位测量中显微物镜引入的附加相位的消除问题。在DHM相位重构中,对比分析了两步法和泽尼克多项式拟合两种附加相位补偿方法,进行了相应的实验研究,实现了多种生物细胞的相位重构。研究结果表明:两种补偿方法均能有效地消除DHM系统的相位误差。对于两步补偿法,由于补偿计算需要两组数字全息图,实验记录耗时,对记录系统稳定性要求高,但采用有、无样品相位相减的补偿算法简单,能够同时补偿显微物镜带来的球面附加相位和光学系统带来的其他相位畸变,相位重构的精度高。对于泽尼克多项式拟合补偿方法,补偿计算仅需一组数字全息图,在动态相位测量中具有特别的优势,但相位重构的误差随待测细胞高度和面积的增大而增大,为提高泽尼克相位补偿法的相位重构精度,需要保证物体的光学高度或者是物体的横向面积在一个较小的范围内变化。上述结果将为DHM用于生物细胞相位重构的研究和应用提供参考。 To obtain the real phase in digital holographic microscopy (DHM), it needs to compensate the additional phase induced by the microscope. Based on the theoretical analysis, both two-step compensation algorithm and Zernike polynomials fitting algorithm are employed to perform the phase reconstruction for biological cell. The obtain results show that both two-step compensation algorithm and Zernike polynomials fitting algorithm are useful for system phase compensation of DHM. In two-step compensation algorithm, since the subtraction operation is performed between the reconstructed phases with the object and without the object, the DHM system phase error can be compensated effectively while it is still time-consuming and needs high experimental stability for recording holograms. In Zernike polynomials fitting algorithm, only one group of digital holograms with the object is required for compensating the additional phase induced by the microscope, therefore it is suitable for the dynamic phase measurement while the constructed phase error increases with both the increase of object height and transverse area. To decrease the reconstruction phase error of Zernike polynomials fitting phase compensation algorithm, it is required to ensure that one of the variations of object optical height or transverse area to be a small value. The result supplies a useful tool for the study and application of biological cell phase compensation by DHM.
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第2期141-147,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61078064 61177005 61275015)
关键词 全息 数字全息显微术 相位重构 两步相位补偿法 泽尼克多项式拟合相位补偿法 holography digital holographic microscopy phase reconstruction two-step phase compensation Zernike polynomials fitting phase compensation
  • 相关文献

参考文献24

  • 1T Zhang, I Yamaguchi. Three dimensional microscopy with phase shifting digital holography[J]. Opt Lett, 1998, 23(15): 1221-1223.
  • 2C D Depeursinge, E Cuche, P Marquet, et al.. Digital holography applied to microscopy[C]. SPIE, 2002, 4659: 30-34.
  • 3E Cuche, P Marquet, C Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Appl Opt, 1999, 38(34): 6994-7001.
  • 4J Fung, K E Martin, R W Perry, et al.. Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy[J]. Opt Express, 2011, 19(9): 8051-8065.
  • 5T Colomb, E Cuche, F Charrière, et al.. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Appl Opt, 2006, 45(5): 851-863.
  • 6J Sheng, E Malkiel, J Katz. Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Appl Opt, 2006, 45(16): 3893-3901.
  • 7I Yamaguchi, T Ida, M Yokota, et al.. Surface shape measurement by phase-shifting digital holography with a wavelength shift[J].Appl Opt, 2006, 45(29): 7610-7616.
  • 8王云新,王大勇,赵洁,李艳,万玉红.基于数字全息显微成像的微光学元件三维面形检测[J].光学学报,2011,31(4):109-114. 被引量:30
  • 9马利红,王辉,金洪震,李勇.数字全息显微定量相位成像的实验研究[J].中国激光,2012,39(3):209-215. 被引量:38
  • 10P Ferraro, S Grilli, L Miccio, et al.. Full color 3-D imaging by digital holography and removal of chromatic aberrations[J]. J Display Technol, 2008, 4(1): 97-100.

二级参考文献49

  • 1桂敏,匡登峰,方志良.基于相位测量法测量透射式相位光栅的表面形貌[J].光电子.激光,2009,20(10):1337-1341. 被引量:3
  • 2赵宏,韩晓弟.东北香蒲科植物花粉形态[J].山东大学学报(工学版),2004,34(4):81-85. 被引量:2
  • 3钟丽云,张以谟,吕晓旭,钱晓凡,熊秉衡.球面参考光波数字全息的一些特点分析及实验[J].光学学报,2004,24(9):1209-1213. 被引量:18
  • 4范琦,赵建林,向强,徐莹,陆红强,李继锋.改善数字全息显微术分辨率的几种方法[J].光电子.激光,2005,16(2):226-230. 被引量:28
  • 5L. Xu, X. Peng, A. Asundi et al.. Hybrid holographic microscope for interferometric measurement of mierostructures [J]. Opt. Engng., 2001, 40(11): 2533-2539.
  • 6L. Miccio, A. Finizio, S. Grilliet al.. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy[J]. Opt. Eacpress, 2009, 17(4): 24874-2499.
  • 7K. J. Stout, L. Blunt. Nanometres to micrometres: threedimensional surface measurement in bio-engineering[J]. Surfaceand Coatjngs Technolgy,1995,71(2):69-81.
  • 8C. Aktouf, B. Pannetier, P. Lemaitre Auger et al.. On-line testing of embedded systems using optical probes: system modeling and probing technology[C]. Proceeding of the Eighth IEEE International On-Line Testing Workshop, 2002: 191.
  • 9S. Yoshida, S. Tanaka, M. Hirata et al.. Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy[J]. Castrointestinal Endoscopy, 2007, 66(1) : 144-149.
  • 10L. Jason, A. Robert. Detailed studies of molecuiar conductance using atomic resolution scanning tunneling microscopy[J]. Nano Lett. , 2008, 6(3): 390-397.

共引文献57

同被引文献76

  • 1贾辉,张世强,陈晨,周朴,何焰兰.像全息的水下应用[J].红外与激光工程,2005,34(1):118-121. 被引量:6
  • 2周常羲,徐果明.连续多发地震重叠记录的同态信号处理[J].地震学报,1990,12(3):299-306. 被引量:2
  • 3GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 4Kemper B, Vollmer A, Rommel C E Rommel, et al.. Simplified approach for quantitative digital holographic phase contrast imaging of living cells [J]. J Biomed Opt, 2011, 16(2): 60141-60144.
  • 5Pavillon N, Arfrie C, Bergoend I, et al.. Iterative method for zero-order suppression in off-axis digital holography [J]. Opt Express, 2010, 18(15): 15318-15331.
  • 6Seelamantula C S, Pavillon N, Depeursinge C, et al.. Exact complex-wave reconstruction in digital holography [J]. J Opt Soc Am A, 2011, 28(6): 683-692.
  • 7D Malacara, M Servin, Z Malacara. Inlerferogram Analysis for Optical Tesfing[M]. 2th edition. United ingdom: Taylor & Francis Ltd, 2005.
  • 8Wang Z, Hall B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Opt Lett, 2004, 29 (14): 1671-1673.
  • 9Wang Z, Han B. Advanced iterative algorithm for randomly phase-shifted interferograms with intra- and inter-frame intensity variations[J]. Opt & Lasers in Eng, 2007, 45(2): 274-280.
  • 10Xu J, Xu Q, Chai L, et al.. Direct phase extraction from interferograms with random phase shifts[J]. Opt Express, 2010, 18(20): 20620-20627.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部