期刊文献+

计算机智能技术在切削参数优化中的应用 被引量:3

Application of statistical methods and computational intelligence in the optimization of cutting parameters
在线阅读 下载PDF
导出
摘要 切削参数的选择和优化是提高机械零件加工精度和稳定性的重要保证。本文以汽车轴承支架轴承孔的精镗切削为例,选择对零件切削精度影响较大的五种参数,采用田口实验及计算机智能技术中的倒传递神经网络和遗传算法等方法的综合运用,对切削参数进行优化,迅速有效地找出最佳切削参数组合,从而提升零件质量和加工过程的稳定性,为提高机械加工企业的市场竞争力开辟了一种新的思路和途径。 Selecting and optimizing cutting parameters ensures the processing precision and stability of mechanical components. Based on the fine boring of the bearing holes of the auto bearing support, Taguchi experiments, the back-propagation neural network and genetic algorithms were employed to optimize five cutting parameters that may largely affect cutting precision. Optimum cutting parameter settings were obtained. The results indicate that the integrated use of the methods can improve the quality of the mechanical components and the stability of processing.
作者 江小云
出处 《福建工程学院学报》 CAS 2013年第6期573-577,共5页 Journal of Fujian University of Technology
基金 全国统计科研计划重点项目(2012LZ037)
关键词 切削参数 田口方法 倒传递神经网络 遗传算法 cutting parameter Taguchi method back-propagation neural network genetic algorithm
  • 相关文献

参考文献7

二级参考文献35

共引文献145

同被引文献21

  • 1张立煌,李杰.中药现代化的现状及发展趋势[J].浙江大学学报(医学版),2011,40(4):349-353. 被引量:14
  • 2李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 3Chen Wen-chin, Fu Gong-loung. Process parameter optimization for MIMO plastic injection molding via soft computing[J]. Expert Systems with Applications, 2009(36): 1114-1122.
  • 4Jiang Xiao-yun, Wu Horng-huei. Optimization of setup frequency for TOC supply chain replenishment system with capacity constraints[J].Neural Computing and Applications.2013, 23(6):1831-1838.
  • 5Tai Hui-yin, Huang Bao-huey, Wang An-siou. Combining AHP and GRA model for evaluation propertyliability insurance companies to rank[J]. The Journal of Grey System, 2008, 20(01):6578.
  • 6Lin Wen-tsann, Wang Shen-tsu, Li Meng-hua, et al. Optimization of a light guide plate injection molding stability process by integrating Taguchi quality engineering and the gray sequencing method[J].Proc IMechE, Part B: J Engineering Manufacture.2012, 226(11):1937-1946.
  • 7Kennedy J, Eberhart R. Particle swarm optimization[DB/OL].[1995-12-01].http://xplorestaging.ieee.org/stamp/stamp.jsp?tp=&arnumber=488968.
  • 8张碧陶,高伟强,沈列,阎秋生.S曲线加减速控制新算法的研究[J].机床与液压,2009,37(10):27-29. 被引量:37
  • 9何均,游有鹏,陈浩,王化明.S形加减速的嵌套式前瞻快速算法[J].航空学报,2010,31(4):842-851. 被引量:11
  • 10胡仁平,刘刚.基于改进遗传算法的神经网络优化设计[J].计算机应用与软件,2011,28(1):249-252. 被引量:10

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部