摘要
采用材料主轴法 ,建立了初始斜交异性材料在变形构形 (Euler描述 )下的斜交异性本构方程 ,以及在初始构形 (Lagrange描述 )下的形式 .具体给出了斜交异性线弹性材料方程的显式 ,它在Lagrange描述下形式简洁 ,可方便地用于有限元计算 .文中指出 ,在变形构形下是线弹性的材料 ,在Lagrange描述下其本构方程一般已成为非线性 ,我们称之为本构转换非线性 .这种非线性在实际的有限元计算中还未引起重视 .为理论简明 。
The main axis method for materials is used to establish the constitutive equations for initially oblique crossing anisotropic materials in both deformed configuration (Eulerian description) and initially configuration (Lagrangian description). The equations for linearly elastic materials are given, which is simple and convenient to be used for finite element calculation. It is point out that the constitutive equations of materials, which is linearly elastic in Eulerian description, are generally nonlinear in Lagrangian description that is termed as nonlinearity of constitutive transformation. That nonlinearity is still not considered in finite element calculation. For simplicity, the constitutive equations are established in two dimensional space.
出处
《固体力学学报》
CAS
CSCD
北大核心
2000年第4期345-349,共5页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金!(批准号 :19772 0 32 )
国家教委固体力学开放研究室(同济大学)资助
关键词
初始斜交异性
初始正交异性
本构转换非线性
材料
大变形
本构方程
constitutive theory, initially oblique crossing anisotropy, initial orthotropy, nonlinearity of constitutive transformation