期刊文献+

解含非线性源项的变分不等式问题的非重叠区域分解法 被引量:4

NONOVER LAPPING DOMAIN DECOMPOSITION METHOD FOR SOLVING VARIATIONAL INEQUALITIES WITH NONLINEAR SOURCE TERMS
原文传递
导出
摘要 In this paper, a kind of nonoverlapping domain decomposition method, for solving variational inequalities with nonlinear source terms, is proposed. Convergence theorem and convergent rate analysis of the method are given. In this paper, a kind of nonoverlapping domain decomposition method, for solving variational inequalities with nonlinear source terms, is proposed. Convergence theorem and convergent rate analysis of the method are given.
出处 《计算数学》 CSCD 北大核心 2001年第1期37-48,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金资助课题!(19771034)
关键词 非线性源项 变分不等式 非重叠区域分解 收敛 nonlinear source term, variational inequality, nonoverlapping, domain decomposition, convergence
  • 相关文献

参考文献6

二级参考文献27

  • 1吕涛,区域分解算法,1992年
  • 2吕涛,Syst Sci Math Sci,1991年,4期,340页
  • 3郭友中,变分不等方程及其应用,1991年
  • 4曾金平,Proc of DDM8,1995年
  • 5周叔子,Proc of DDM8,1995年
  • 6许学军,高等学校计算数学学报,1994年,16卷,186页
  • 7曾金平,计算数学,1994年,1卷,26页
  • 8吕涛,区域分解算法,1992年
  • 9Lu T,Sci & Math Sci,1991年,4卷,340页
  • 10王荩贤,计算数学,1988年,2卷,163页

共引文献24

同被引文献25

  • 1亓文果,金先龙,张晓云,李渊印,李根国.汽车碰撞有限元仿真的并行计算及其性能研究[J].系统仿真学报,2004,16(11):2428-2431. 被引量:19
  • 2Jin-ping Zeng Gao-jie Chen.CONVERGENCE RATE OF A GENERALIZED ADDITIVE SCHWARZ ALGORITHM[J].Journal of Computational Mathematics,2006,24(5):635-646. 被引量:1
  • 3A Quarteroni, A Valli. Domain Decomposition Methods for Partial Differential Equations [M]. New York: Oxford University Press, 1999.
  • 4Y Kuznetsov, P Neittaamaki, P Tarvainen. Schwarz Methods for Obstacle Problem [J]. East-West J. Numer. Math. (S0928-0200), 2001, 9(3): 233-252.
  • 5P L Lions. On the Schwarz Alternating Method I [C]//R Glowinski, G H Golub, G A Meurant, et al. Proceedings of Domain Decomposition Method. Philadelphia: SIAM, 1988: 1-40.
  • 6L Badea, X Tai, J Wang. Convergence Rate Analysis of A Multiplicative Schwarz Method for Variational Inequalities [J]. SIAM J. Numer. Anal.(S0036-1429), 2003, 41(3): 1052-1073.
  • 7L Badea, J Wang. An Additive Schwarz Method for Variational Inequalities [J]. Math. Comput. (S0025-5718), 2000, 69(232): 1341-1354.
  • 8X Tai. Rate of Convergence for Some Constraint Decomposition Methods for Nonlinear Variational Inequalities [J]. Numer. Math.(S0029-599X), 2003, 93(4): 755-786.
  • 9P L Lions. On the Schwarz Alternating Method III [C]//T F Chan, R Glowinski, J Pariaux, et al. Third International Symposium on Domain Decomposition Methods. Philadelphia: SIAM, 1990: 202-223.
  • 10C Li, J Zeng, S Zhou. Convergence Analysis of Generalized Schwarz Algorithms for Solving Obstacle Problems with T-monotone Operator [J]. Comput. Math. Appl. (S0898-1221), 2004, 48(3): 373-386.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部