期刊文献+

基于新型关联规则算法的开关柜局放程度分类研究 被引量:15

Classification of Partial Discharge Level in Switchgear Cabinet Based on the Improved Association Rules Mining Algorithm
在线阅读 下载PDF
导出
摘要 为对开关柜绝缘状态进行评估,文中介绍了一种新型的关联规则数据挖掘(ARM)算法,用于识别开关柜局部放电的严重程度。该算法采用模糊C均值聚集(FCM)的方法划分局部放电特征量区间,基于改进型Apriori寻找满足最小支持度和最小可信度的候选集,对候选集进行递推和多次检索以产生用于分类的关联规则库。基于关联规则库对采集的10 kV开关柜中的多组针尖电晕局部放电信号进行模糊推理,结果表明采用关联规则的局部放电分类识别率高,分类结论准确,为开关柜绝缘状态评估提供了一定的理论依据和实际应用价值。 An improved association rules mining (ARM) algorithm is proposed for classification and recognition of partial discharge level to estimate the insulation status in switchgear cabinet. The method of fuzzy C-means clustering(FCM) is used to divide the range of partial Apriori algorithm is improved to find the candidate item sets which discharge characteristic amounts. The meet the minimum support and the minimum confidence. Recursion and retrieval are executed repeatedly to establish an association rule base for classification. A partial discharge experiment platform for 10 kV switchgear cabinet is set up, and several groups of corona partial discharge signals at different severity levels are detected for fuzzy reasoning. The results show that the signals can be classified into three severity levels accurately. The proposed classification method may benefit insulation status estimation and partial discharge detection.
出处 《高压电器》 CAS CSCD 北大核心 2014年第2期23-28,共6页 High Voltage Apparatus
基金 国家自然科学基金资助项目(51307106)~~
关键词 开关柜 局部放电 关联规则数据挖掘 模糊C均值聚集 APRIORI算法 模糊推理 switchgear cabinet partial discharge association rules mining fuzzy C-means clustering Apriorialgorithm fuzzy reasoning
  • 相关文献

参考文献24

二级参考文献128

共引文献752

同被引文献148

  • 1曹亚丽.自适应滤波器中LMS算法的应用[J].仪器仪表学报,2005,26(z2):452-454. 被引量:43
  • 2谢东日,徐敏捷,刘孙相与,王艺钦.高压开关柜改进型温湿度预警与在线监测系统[J].微型机与应用,2013,32(24):63-65. 被引量:5
  • 3纪航,朱永利,郭伟.基于模糊综合评价的变压器状态评分方法研究[J].继电器,2006,34(5):29-33. 被引量:26
  • 4黄兴泉,康书英,李泓志,张欲晓.GIS局部放电超高频电磁波的传播特性研究[J].高电压技术,2006,32(10):32-35. 被引量:37
  • 5Short T A.Arc-flash analysis approaches for medium-voltage distribution[J].IEEE Transactions on Industry Applications,2011,47(4):1902-1909.
  • 6Hussain G A,Kumpulainen L,Kluss J V,et al.The smart solution for the prediction of slowly developing electrical faults in mv switchgear using partial discharge measurements[J].IEEE Transactions on Power Delivery,2013,28(4):2309-2316.
  • 7Krause K,Burns D,Hutchinson S,et al.Managing arc flash: collaborative solutions in medium-voltage switchgear[J].IEEE Industry Applications Magazine,2014,20(1):70-78.
  • 8He Xiaofei,Cai Deng,Niyogi P.Laplacian score for feature selection//Proceedings of Advances in Neural Information Processing System.Vancouver,Canada:The Neural Information Processing Systems (NIPS) Foundation,2005:507-514.
  • 9Hampton B F, Meats R J. Diagnostic Measurements at UHF in Gas Insu- lated Substation[J]. IEEE Proceedings, 1998, 135(2) : 137-144.
  • 10Pearson J S, Hampton B F, Sellars A G. A Continuous UHF Monitor for Gas - insulated Substations [ J ]. IEEE Trans. On El, 1991, 26 ( 3 ) : 469 - 478.

引证文献15

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部