期刊文献+

带孔薄壁圆管多轴加载下的弹塑性有限元分析 被引量:2

Elasto-plastic Finite Element Analysis for Thin-walled Tube with Hole under Multi-axial Loading
在线阅读 下载PDF
导出
摘要 对低碳钢材料带孔薄壁圆管试样采用逐级加载试验方法,得出其在室温下的单轴循环应力-应变本构关系。利用有限单元法对圆管试样进行弹塑性分析,采用Von Mises屈服准则、多线性随动强化模型,并结合试验获得的本构关系来定义材料的弹塑性特性。拉扭应变载荷加载在柱坐标下进行,采用一端固定,另一端加轴向位移与周向位移的方式。分别在纯拉、纯扭以及拉-扭比例加载下计算出应力应变场,获得不同受力情况下不同孔径尺寸试样在缺口处的应力应变分布。计算结果为多轴加载疲劳试验和复杂应力状态下工程零部件的疲劳寿命预测与分析提供基本数据。 Stepwise loading method is carried out on a sort of low earbon steel material' s thin-walled tube specimens with hole. The material' s stress-strain constitutive relation of uniaxial eyelie is obtained. Adopting the finite element method and applying the elastic-plastic analysis of the tubular specimens, elasto-plastie material property is described by the Von Mises yield criterion. The muhilinear kinematic hardening rules and the constitutive relation are got by the experiment. Tension-torsion loading is carried out by applying the axial and circular displacement on one end of tbe speeimen in the cylindrical coordinate system. The stress-strain responses under tension, torsion and proportional loading are ealculated, and then the stress-strain law around the notch of the specimens with different diameter size of the hole is obtained. The result will help providing basic data for the multi-axial loading fatigue test and fatigue life prediction under complex stress state.
出处 《实验室研究与探索》 CAS 北大核心 2013年第12期54-56,60,共4页 Research and Exploration In Laboratory
关键词 本构关系 带孔薄壁管 有限元法 多轴加载 constitutive relation thin-walled tube with hole finite element method multi-axial loading
  • 相关文献

参考文献13

二级参考文献44

  • 1付德龙,张莉,程靳.基于塑性应变能的多轴低周疲劳寿命预测模型[J].工程力学,2007,24(3):54-57. 被引量:5
  • 2李静.金属多轴疲劳寿命预测模型研究[D].西安:空军工程大学,2008.
  • 3Savaidis A, Savaidis G, Zhang C. Elastic --plastic FE analysis of a notched shaft under malt/axial nonproportional synchronous cyclic loading [ J ]. Theoretical and Applied Fracture Mechanics, 2001,36 : 87 - 97.
  • 4Kocabicak U. Firat A simple approach for multiaxial fatigue damage prediction based on FEM post--processing [ J ]. Materials and Design ,2004 ,25:73 - 82.
  • 5Li B, Reis L, Freitas M D. Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction [ J ]. International Journal of Fatigue,2006,28:451 - 458.
  • 6Fatemi A, Socie D F. Muhiaxial fatigue: Damage mechanisms and life predictions[ J]. Advances in Fatigue Science and Technology, 1989 : 877 - 890.
  • 7Karolczuk A, Macha E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials [J]. International Journal of Fracture, 2005, 134(3): 267-304.
  • 8Jiang Y. A fatigue criterion for general multiaxial loading [J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(1): 19-32.
  • 9Jiang Y, Hertel O, Vormwald M. An experimental evaluation of three critical plane multiaxial fatigue criteria [J]. International Journal of Fatigue, 2007, 29(8): 1490- 1502.
  • 10Chu C C. Multiaxial fatigue life prediction method in the ground vehicle industry [J]. International Journal of Fatigue, 1997, 19(93): 325-330.

共引文献50

同被引文献25

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部