期刊文献+

基于希尔伯特-黄变换的白细胞信号分析 被引量:1

The Analysis of White Blood Cell Signal Based on Hilbert-Huang Transform
在线阅读 下载PDF
导出
摘要 白细胞信号(WBS)具有脉冲形状多样和时频特性各异的特点,目前临床上用细胞信号脉冲计数的方法来分析WBS通常难以反映其所携带的丰富的生理和病理信息,并直接影响到细胞分类问题。针对这一问题,探索能自适应地分解非线性非平稳信号的希尔伯特-黄变换算法在WBC时频分析和分类中的应用效果。通过对血细胞中的WBC进行HHT变换,获取WBC的本征模态函数(IMF)分量、分量的Hilbert边际谱以及信号Hilbert谱;利用瞬时频率、瞬时幅值等进行计算提取健康人与患者的WBS平均强度、谱质心以及能量贡献率等特征作对比分析,根据其时频特征分布规律构建用于分类实验的特征向量;采用支持向量机(SVM)分类器,对58名健康人和60名患者的白细胞实验样本进行分类实验。结果表明,该方法提取的健康人和患者的WBS分量谱质心分布、平均强度值以及能量贡献率具有较好的区分度,分类正确率到达了94.83%。HHT方法能有效提取WBS特征,可辅助临床WBS的处理和分析。 White cell signal (WBS) has various shapes of pulse and different time-frequency features, which makes it difficult to extact the physiological and pathological information from WBS using cell signal pulse- counting method and classify the blood cells accurately in clinics. In this work, the Hilbert-Huang transform (HHT) method which can adaptively decompose non-stationary and nonlinear signal was investigated to explore its application in WBS time-frequency analysis and classification. Using HHT, WBC's intrinsic mode function (IMF), Hilbert marginal spectrum of IMF and Hilbert spectrum of WBS were obtained; Average intensity, spectral centric and the energy contribution rate of WBS of healthy people and patients were extracted and analysised through instantaneous frequency and instantaneous amplitude. According to the distribution of time- frequency features, the feature vector for classification experiments were constructed, and then support vector machine (SVM) was adopted in the classification of WBS experimental samples of 58 healthy persons and 60 patients. Results showed that the correct ratio of WBS classification was 94.83%. In conclusion, the HHT method is effective in extracting the WBS features and may be expected to assist clinical WBS processing and analysis.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2014年第1期57-62,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61261011)
关键词 白细胞 希尔伯特-黄变换 特征提取 分类识别 white blood cell Hilbert-Huang transform feature extracting classification
  • 相关文献

参考文献8

  • 1丛玉隆.当代检验分析技术与临床[M]北京:中国科学技术出版社,200220-21.
  • 2Huang NE,Zheng Shen,Steven R. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London,1998.903-993.
  • 3张冬雨;李乃民;贾丹兵.超声脉搏图与人体胃气关系的观察[A]北京:中国中西医结合学会,2008281-287.
  • 4Li Helong,Yang Lihua,Huang Daren. Application of HilbertHuang transform to heart rate variability analysis[A].Shanghai:IEEE,2008.648-651.
  • 5Li Helong,Sam K,Yang Lihua. Hilbert-Huang transform for analysis of heart rate variability in cardiac health[J].IEEE/ACM Trans on Com Bio and Bioinfonnatics,2011,(06):1557-1567.
  • 6熊学军,郭炳火,胡筱敏,刘建军.EMD方法和Hilbert谱分析法的应用与探讨[J].黄渤海海洋,2002,20(2):12-21. 被引量:124
  • 7郑君里;应启珩;杨为理.信号与系统[M]北京:高等教育出版社,2000.
  • 8王娜,陈克安.分段谱质心特征在水下目标识别中的应用[J].兵工学报,2009,30(2):144-149. 被引量:18

二级参考文献14

  • 1Bismark G. Timbre of steady sounds: a factorial investigation of its verbal attributes[J]. Acoustica, 1974, 30:146 - 159.
  • 2Grey J M. Multidimensional perceptual scaling of musical timbre [J]. JASA, 1977, 61(5): 1270-1277.
  • 3Daniel J F. Auditory correlates of perceived mallet hardness for a set of recorded percussive sound events[J]. JASA, 1990, 87(1) : 311 - 322.
  • 4Caclin A, McAdams S, Smith B K, et al. Acoustic correlates of timbre space simensions: a confirmatory study using synthetic tones[J]. JASA, 2005, 118(1) : 471 - 482.
  • 5Tae Hong Park. Towards automatic musical instrument timbre recognition[D]. Princeton: Princeton University, 2004.
  • 6XIN Zhang, Zbigniew W R. Analysis of sound features for music timbre recognition [ C]. 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), 2007:3 - 8.
  • 7McAdarns S, Beauchamp J W, Meneguzzi S. Discrimination of musical instruments sounds resynthesized with simplified spectrotemporal parameters[J]. JASA, 1999, 105(2) : 882- 897.
  • 8Eronen A, Klapuri A. Musical instrument recognition using cepstral coefficients and temporal features[C]. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2000, 753-756.
  • 9Brown J C, Houix O, McAdams S. Feature dependence in the automatic identification of musical woodwind instruments [ J ]. JASA, 2001, 109(3): 1064-1072.
  • 10Giulio A, Maurizio L, Emanuele P. Musical instrument timbres classification with spectral features [C]. EURASIP Journal on Applied Signal Processing, 2003, 1: 5- 14.

共引文献140

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部