期刊文献+

Asymptotic Estimates on the Time Derivative of Φ-entropy on Riemannian Manifolds

Asymptotic Estimates on the Time Derivative of Φ-entropy on Riemannian Manifolds
原文传递
导出
摘要 In this note, we obtain an asymptotic estimate for the time derivative of the O-entropy in terms of the lower bound of the Bakry-Emery F2 curvature. In the cases of hyperbolic space and the Heisenberg group (more generally, the nilpotent Lie group of rank two), we show that the time derivative of the O-entropy is non-increasing and concave in time t, also we get a sharp asymptotic bound for the time derivative of the entropy in these cases. In this note, we obtain an asymptotic estimate for the time derivative of the O-entropy in terms of the lower bound of the Bakry-Emery F2 curvature. In the cases of hyperbolic space and the Heisenberg group (more generally, the nilpotent Lie group of rank two), we show that the time derivative of the O-entropy is non-increasing and concave in time t, also we get a sharp asymptotic bound for the time derivative of the entropy in these cases.
作者 Bin QIAN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第4期609-618,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11201040)
关键词 Ф-entropy CURVATURE heat kernel hyperbolic space Ф-entropy, curvature, heat kernel, hyperbolic space
  • 相关文献

参考文献1

二级参考文献18

  • 1Bakry, D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New Trends in Stochastic Analysis, Charingworth, 1994, World Scientific Publishing, River Edge, 1997, 43-75.
  • 2Bakry, D., Baudoin, F., Bonnefont, M., et al, On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal., 255, 2008, 1905-1938.
  • 3Bakry, D., Baudoin, F., Bonnefont, M., et al, Subelliptic Li-Yau estimates on three dimensional model spaces, Potential Theory and Stochastics in Albac, Theta Series in Advanced Mathematics, 2009.
  • 4Baudoin, F. and Bonnefont, M., The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds, Math. Z., 263(3), 2009, 647-672.
  • 5Beals, R., Gaveau, B. and Greiner, P. C., Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl. (9), 79(7), 2000, 633-689.
  • 6Bonfiglioli, A. and Uguzzoni, F., Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal., 207(1), 2004, 161-215.
  • 7Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, Yol. 92, Cambridge University Press, New York, 1989.
  • 8Engoulatov, A., A universal bound on the gradient of logtithm of the heat kernel for manifolds with bounded Ricci curvature, J. Funct. Anal., 238, 2006, 518-529.
  • 9Gaveau, B., Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents, Acta Math., 139, 1977, 95 153.
  • 10Kaplan, A., Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258, 1980, 147-153.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部