期刊文献+

混沌和神经网络相结合预测短波通信频率参数 被引量:30

Prediction of frequency parameters in short wave radio communications based on chaos and neural networks
原文传递
导出
摘要 为提高短波通信的可靠性 ,提出了一种将混沌和神经网络相结合的方法预测短波通信频率参数。利用混沌方法重构相空间系统吸引子 ,用前向多层神经网络拟合吸引子上的全局整体映射 ,构成混合预测模型。实验结果表明 ,将此混合模型用于预测短波通信频率参数如 F2 层临界频率 ffo F 2 ,能达到较好的预测效果 ,可以应用到实际预测系统中。还将基于奇异值分解的噪声消减滤波算法应用到数据预处理中 。 The reliability of short wave communication can be improved using a hybrid method for predictions based on chaos phase reconstruction and neural networks to predict frequency parameters. This article presents the use of the chaos method to reconstruct attractors in phase spaces and a multi layer feed forward neural network to fit the attractor's global map, to construct a hybrid prediction model. Experimental results show that the hybrid model provides goods predictions and has promising applications. This article also shows the efficiency of a noise suppressing method based on single value decomposition (SVD).
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第1期16-19,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目!(6 0 0 72 0 0 1) 清华大学"九八五"基金项目
关键词 混沌 神经网络 预测 短波通信 奇异值分解 噪声 chaos neural network prediction short wave communication single value decomposition noise
  • 相关文献

参考文献5

  • 1[1]Takens F. Detecting strange attractors in turbulence [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 366~381.
  • 2[2]Casdagli M. Nonlinear prediction of chaotic time series [J]. Physica D, 1989, 35: 335~356.
  • 3[3]Cybenko G. Approximation by superposition of a single function [J]. Mathematics of Control, Signals and Systems, 1989, 2: 303~314.
  • 4[4]Takens F. On the numerical determination of the dimension of an attractor [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 230241.
  • 5[5]Abarbanel D.I. Analysis of Observed Chaotic Data [M]. New York: Springer-Verlag, 1996.

同被引文献206

引证文献30

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部