期刊文献+

微群核心用户挖掘的关联规则方法的应用 被引量:3

Identifying Influential Users in Micro-group Using Association Rules
原文传递
导出
摘要 提出将关联规则方法应用到微群核心用户挖掘中,选取新浪微群作为具体实验对象,分别利用关联规则方法、主流的社交网络方法和常用的评价指标体系方法对采集到的真实微群数据集进行对比分析,验证模型的有效性。同时发现常用的评价指标体系方法需要根据微群的具体问题进行调整,而关联规则方法可自动处理,说明关联规则方法具有普适性。 This paper proposes a recognition model using association rules to identify the target users and choose Sina micro- group to build the model of association rules using the true data set. In order to ensure the validity of the model, this paper compares the result of association model with that of the current social network analysis and evaluation system. Lastly, in comparison with evaluation system, it is found that evaluation system should be modified to adapt the specific issues in micro - group and the association rules method can automatically process those problems, which also illustrates the universal use of the mode of association rules.
出处 《图书情报工作》 CSSCI 北大核心 2014年第2期115-120,共6页 Library and Information Service
基金 国家社会科学基金项目"基于大数据技术的微博问政话题挖掘研究"(项目编号:13BTJ005)研究成果之一
关键词 微群 核心用户 关联规则 SNA 指标体系 Micro-group influential users association rules SNA evaluation system
  • 相关文献

参考文献24

  • 1刘锐.微博意见领袖初探[J].新闻记者,2011(3):57-60. 被引量:67
  • 2Eccleston D,Griseri L.How does Web 2.0 stretch traditional influencing patterns?[J].International Journal of Market Research,2008,50(5):575-590.
  • 3Van den Bulte C,Wuyts S.Social networks and marketing[M].Cambridge:Marketing Science Institute,2007.
  • 4Katz E.The two-step flow of communication:An up-to-date report on an hypothesis[J].Public Opinion Quarterly,1957,21(1):61-78.
  • 5Gladwell M.The tipping point:How little things can make a big difference[M].London:Hachette Digital,Inc.,2006.
  • 6Watts D J,Dodds P S.Influentials,networks,and public opinion formation[J].Journal of Consumer Research,2007,34(4):441-458.
  • 7Eirinaki M,Monga S P S,Sundaram S.Identification of influential social networkers[J].International Journal of Web Based Communities,2012,8(2):136-158.
  • 8Probst F,Grosswiele D K L,Pfleger D K R.Who will lead and who will follow:Identifying influential users in online social networks[J].Business & Information Systems Engineering,2013,5(3):179-193.
  • 9Goldenberg J,Han S,Lehmann D,et al.The role of hubs in the adoption processes[J].Journal of Marketing,2009,73(2):1-13.
  • 10Hinz O,Skiera B,Barrot C,et al.Seeding strategies for viral marketing:An empirical comparison[J].Journal of Marketing,2011,75(6):55-71.

二级参考文献26

  • 1严鸿和,陈玉祥,许昭明,杨皖苏.专家评分机理与最优综合评价模型[J].系统工程理论与实践,1989,9(2):19-23. 被引量:77
  • 2程曼丽新浪微博,http://t.sina.com.cn/chengmanli12月19日.
  • 3范以锦、尹鸿.《公众人物如何用好话语权》.《人民日报》2010年12月9日.
  • 4Krishnamurthy,B.,Gill,P.and Arlitt,M.,A Few Chirps About Twitter.In Proceedings of WOSP'08,2008,19-24.
  • 5Java,A.,Finin,T.,Song,X.et al.,Why We Twitter:Understanding Microblogging Usage and Communities.In Proceedings of the Joint9th WEBKDD and1st SNA-KDD Workshop2007,2007,56-65.
  • 6Huberman,B.,Romero,D.M.and Wu,F.,Social Networks That Matter:Twitter Under the Microscope.First Monday,14(1-5),2009.
  • 7Lazarsfield,P.F.,Berelson,B.and Gauset,H.,The People’s Choice:How the Votes Makes Up His Mind in a Presidential.New York:Columbia University Press,1948:P.151.
  • 8Tunkelang,D.,A Twitter Analog to PageRank.http://thenoisychannel.com/2009/01/13/a twitter-analog-to-pagerank/.
  • 9Weng,J.,Lim,E.,Jiang,J.et al.,Twitterrank:Finding Topic-Sensitive Influential Twitterers.In Proceedings of the3rd ACM international conference on Web search and data mining,.ACM,2010,261-270.
  • 10Kwak,H.,Lee,C.,Park,H.et al.,What Is Twitter,A Social Network or A News Media?In Proceedings of WWW’10.ACM,2010,591-600.

共引文献220

同被引文献45

  • 1遇辉,马秀莉,谭少华,唐世渭,杨冬青.基于奇异值分解的异常切片挖掘[J].软件学报,2005,16(7):1282-1288. 被引量:6
  • 2李良俊,张斌,杨明.基于LSA降维的KNN文本分类算法[J].东北师大学报(自然科学版),2007,39(2):33-36. 被引量:7
  • 3风召.高维数据挖掘技术研究[M].南京:东南大学出版社.2007.
  • 4Pang B, Lee L. Opinion mining and Sentiment Analysis [ J ]. Foundations and Trends in Information Retrieval,2008,2 (1-2) : 1-135.
  • 5Liu B. Sentiment Analysis and Opinion Mining [ J ]. Synthesis Lectures on Human Language Technologies,2012,5 ( 1 ) : 1 - 167.
  • 6Miao J J, (=hen G Y, Wang L, et al. A Semantic-Based Algo- rithm for Microblogs Clustering[ J]. Applied Mechanics and Ma- terials, 2013, 278 : 1174-1177.
  • 7Griffiths T L, Steyvers M. Finding Scientific Topics [ J ]. Pro- ceedings of the National Academy of Sciences of the United Stats of America, 2004, 101 ( Suppl 1 ) : 5228-5235.
  • 8Song S, Li Q,Zbeng N. A Spatio-temporal Framework for Re- lated Topic Search in Micro-blogging[ M]. Heidelberg: Spring- er, 2010: 63-73.
  • 9Mathioudalds M, Koudas N. Twittermonitor: Trend Detection Over the Twitter Stream [ C ]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. ACM, 2010: 1155-1158.
  • 10Mehrotra R, Sanner S, Buntine W, et al. Improving Ida Topic Models for Microblogs Via Tweet Pooling and Automatic Labe- ling[ C ]//Proce, edings of the 36th international ACM SIGIR Conference on Research and Development in Information Retriev- al. ACM, 2013: 889-892.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部