摘要
利用修正的H1-Galerkin混合有限元方法求解了一类来源于神经传导过程的伪双曲型方程.在二维和三维空间下通过引入两个不同物理意义的辅助变量,将模型方程分解成两个一阶系统.对两个系统分别构造了全离散格式.在不需要验证LBB连续性条件和不需要限制逼近空间的条件下得到了最优阶误差估计.
Modified H^1-Galerkin mixed finite element method is used to solve a class of second-order pseudo-hyperbolic equations arising in the modeling of nerve conduction process. The model equations in two and three space dimensions are splitted into two first-order systems by introducing two auxiliary variables with different physical meanings. The fully-discrete schemes are constructed for the two systems respectively. Optimal error estimates are derived without the LBB-consistency condition and the restriction on the approximating spaces.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期130-136,共7页
Journal of Inner Mongolia University:Natural Science Edition
基金
Supported by National Natural Science Funds of China(No.11361035)
the National Science Foundation of Inner Mongolia Province(No.2012MS0106)
Scientific Research Projection of Higher Schools of Inner Mongolia(No.NJZY14013)
Program of Higher Level Talents of Inner Mongolia University(No.135127)~~