期刊文献+

伪双曲方程的全离散修正H^1-Galerkin混合有限元方法(英文)

Fully-discrete Modified H^1-Galerkin mixed Finite Element Methods of Pseudo-hyperbolic Equations
在线阅读 下载PDF
导出
摘要 利用修正的H1-Galerkin混合有限元方法求解了一类来源于神经传导过程的伪双曲型方程.在二维和三维空间下通过引入两个不同物理意义的辅助变量,将模型方程分解成两个一阶系统.对两个系统分别构造了全离散格式.在不需要验证LBB连续性条件和不需要限制逼近空间的条件下得到了最优阶误差估计. Modified H^1-Galerkin mixed finite element method is used to solve a class of second-order pseudo-hyperbolic equations arising in the modeling of nerve conduction process. The model equations in two and three space dimensions are splitted into two first-order systems by introducing two auxiliary variables with different physical meanings. The fully-discrete schemes are constructed for the two systems respectively. Optimal error estimates are derived without the LBB-consistency condition and the restriction on the approximating spaces.
作者 赵利 方志朝
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期130-136,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 Supported by National Natural Science Funds of China(No.11361035) the National Science Foundation of Inner Mongolia Province(No.2012MS0106) Scientific Research Projection of Higher Schools of Inner Mongolia(No.NJZY14013) Program of Higher Level Talents of Inner Mongolia University(No.135127)~~
关键词 修正的H^1-Galerkin混合有限元方法 全离散格式 伪双曲型方程 最优阶误差估计 modified H^1-Galerkin mixed finite element method fully-discrete scheme pseudoyperbolic equation optimal error estimate
  • 相关文献

参考文献9

  • 1Nagumo J,Arimoto S,Yoshizawa S. An active pulse transmission line simulating nerve axon[J]. Proceedings of the IRE,1962,50(10) :2061-2070.
  • 2Pao C V. A mixed initial boundary value problem arising in neurophysiology[J]. J Math Anal Appl, 1975,52 (1):105-119.
  • 3Cowsar L C,Dupont T F,Wheeler M F. A priori estimates for mixed finite element methods for the wave equa- tionEJ]. Comp Methods Appl Mech Engrg, 1990,82 (1 - 3) : 205-222.
  • 4Geveci T. On the application of mixed finite element methods to the wave equation[J]. Math Model Numer Anal, 1988,22(2) :492-504.
  • 5Makridakis C G. On mixed finite element methods for linear elastodynamicsEJ]. Numer Math, 1992,61 (1) :235- 260.
  • 6Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equationsJ]. SIAM J Numer Anal, 1998,35(2) : 712-727.
  • 7Liu Y,Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations[J], Appl Math Corn- put ,2009,212:446-457.
  • 8Pehlivanov A I,Carey G F. Error estimates for least-square mixed elementsl-J]. MZ AN Mathematical Modeling and Numerical Analysis, 1994,28(5) :499-516.
  • 9Wheeler M F. A priori Lz - error estimates for Galerkin approximations to parabolic differential equations[J]. SIAM J Numer Anal , 1973,10(4) : 723-749.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部