期刊文献+

一种利用互信息加权的最小二乘法丰度反演算法 被引量:4

An Abundance Inversion Algorithm Based on Mutual Informationweighted Least Squares Error
在线阅读 下载PDF
导出
摘要 提出了基于互信息加权的最小二乘算法丰度反演,选择互信息矩阵作为加权矩阵,从熵的角度反映了不同波段间的相关性.同时,在丰度反演过程中应用波段选择技术,降低了数据处理的复杂度.分析实验仿真结果,与传统的最小二乘算法和已有的加权最小二乘丰度反演算法相比,获得了更精确的丰度信息,反演效果得到提升,验证了该算法的可行性. In order to highlight the distinctness between the bands and obtain more accurate abundance of mixed pixels, the least squares error algorithm is used, which is based on weighted matrix for the abundance inversion. Abundance inversion based on mutual information-weighted least squares error algorithm is presented, mutual information from the perspective of entropy to reflect the correlation between different bands. Band selection technology is adopted in abundance inversion to reduce the complexity of data processing. Compared with the existing weighted matrix and traditional least squares error problem, the analysis of the experimental result shows the feasibility of this algorithm.
出处 《沈阳大学学报(自然科学版)》 CAS 2014年第1期45-49,共5页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(61077079) 教育部博士点计划基金资助项目(20102304110013) 黑龙江省自然科学基金重点资助项目(ZD201216)
关键词 高光谱解混 丰度反演 最小二乘算法 互信息 波段选择 hyperspectral unmixing abundance inversion least squares error algorithm mutual information band selection
  • 相关文献

参考文献7

二级参考文献33

  • 1张伟,杜培军,张华鹏.基于神经网络的高光谱混合像元分解方法研究[J].测绘通报,2007(7):23-26. 被引量:4
  • 2吴波,张良培,李平湘.高光谱端元自动提取的迭代分解方法[J].遥感学报,2005,9(3):286-293. 被引量:17
  • 3谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 4Yu Yue, Guo Shah, SUN Weidong. Minimum dis- tance constrained nonnegative matrix factorization for the endmember extraction of hyperspectral images [C]//Proceedings of the SPIE, 2007, 6790, 679015.
  • 5HEINZ D C, CHANG C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectrai imagery [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2001, 39(3): 529-545.
  • 6Green Robert O, Pavri Betina E, Chrien Thomas G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6): 1194 - 1203.
  • 7Resmini Ronald G. The categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace [ A]. In:Proceedings of SPIE-The International Society for Optical Engineering [ C ], San Diego, California, USA, 2003,5093:581 - 590.
  • 8Zhang Jun-ping, Zhang Ye, Zou Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition [ A ].In: International Conference on Image Processing [ C ], Vancouver,BC, Canada, 2000,3: 472 - 475.
  • 9Petrie G M, Heasler P G, Warner T. Optimal band selection strategies for hyperspectral data sets [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ]. Seattle, USA,1998,3:1582 - 1584.
  • 10Millette T L. An expert system approach to spectral band selection for remote sensing analysis [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ] , Maryland, USA, 1990: 1285 -1288.

共引文献110

同被引文献19

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部