期刊文献+

Operation optimization of plugged screen cleanup by rotary water jetting 被引量:3

Operation optimization of plugged screen cleanup by rotary water jetting
在线阅读 下载PDF
导出
摘要 The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the operation optimization of this technique depends mainly on experience due to absence of applicable evaluation and design models for removing plugging materials.This paper presents an experimental setup to simulate the cleanup process of plugged screens by rotary water jetting on the surface and to evaluate the performance of a jetting tool.Using real plugged screens pulled from damaged wells,a series of tests were performed,and the qualitative relationships between the cleanup efficiency and various operational parameters,such as the type of fluids used,flow rate,mode of tool movement,etc.,were obtained.The test results indicated that the cleanup performance was much better when the rotary jetting tool moved and stopped periodically for a certain time than that when it reciprocated at a constant speed.To be exact,it was desirable for the rotary jetting tool to move for 1.5-2 m and stop for 2-4 min,which was called the "move-stop-move" mode.Good cleanup performance could be obtained at high flow rates,and the flow rate was recommended to be no lower than 550-600 L/min.The test results also indicated that complex mud acid was better than clean water in terms of cleanup performance.Good cleanup efficiency and high screen permeability recovery could be achieved for severely plugged screens.Rotary jetting is preferred for the cleanup of horizontal wells with severely plugged screens,and the screen permeability recovery ratio may reach 20% if optimized operation parameters were used. The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the operation optimization of this technique depends mainly on experience due to absence of applicable evaluation and design models for removing plugging materials.This paper presents an experimental setup to simulate the cleanup process of plugged screens by rotary water jetting on the surface and to evaluate the performance of a jetting tool.Using real plugged screens pulled from damaged wells,a series of tests were performed,and the qualitative relationships between the cleanup efficiency and various operational parameters,such as the type of fluids used,flow rate,mode of tool movement,etc.,were obtained.The test results indicated that the cleanup performance was much better when the rotary jetting tool moved and stopped periodically for a certain time than that when it reciprocated at a constant speed.To be exact,it was desirable for the rotary jetting tool to move for 1.5-2 m and stop for 2-4 min,which was called the "move-stop-move" mode.Good cleanup performance could be obtained at high flow rates,and the flow rate was recommended to be no lower than 550-600 L/min.The test results also indicated that complex mud acid was better than clean water in terms of cleanup performance.Good cleanup efficiency and high screen permeability recovery could be achieved for severely plugged screens.Rotary jetting is preferred for the cleanup of horizontal wells with severely plugged screens,and the screen permeability recovery ratio may reach 20% if optimized operation parameters were used.
出处 《Petroleum Science》 SCIE CAS CSCD 2014年第1期122-130,共9页 石油科学(英文版)
关键词 Sand control screen cleanup performance rotary jetting operation optimization experimental simulation Sand control screen cleanup performance rotary jetting operation optimization experimental simulation
  • 相关文献

参考文献9

二级参考文献61

共引文献115

同被引文献54

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部