期刊文献+

基于语言模型的有监督词义消歧模型优化研究 被引量:8

Supervised WSD Model Optimization Based on Language Model
在线阅读 下载PDF
导出
摘要 词义消歧是自然语言领域中重要的研究课题之一。目前,有监督词义消歧方法已经是解决该问题的有效手段。但是,由于缺乏大规模的训练语料,有监督方法还不能取得满意的效果。该文提出一种基于语言模型的词义消歧优化模型,该模型采用语言模型优化传统的有监督消歧模型,充分利用有监督和语言模型两种模型的消歧优势,共同推导歧义词的词义。该模型可以在训练语料不足的情况下,有效的提高词义消歧效果。在真实数据上表明,该方法的消歧性能超过了参加SemEval-2007:task#5评测任务的最好的有监督词义消歧系统。 Word Sense Disambiguation (WSD) is one of the key issues in natural language processing. Currently, su- pervised WSD method is an effective way to solve the problem. However, because of the lack of large-scale training data, supervised methods cannot achieve satisfactory results. This paper presents a word sense disamhiguation opti- mization model based on statistical language model, which exploits language model to optimize traditional supervised WSD model. The new model derives the meaning of ambiguous words by taking advantage of the knowledge con- tained in training data and language model. The model can significantly improve WSD performance when the training data is insufficient. Experimental results show that the optimized model outperformed the best participating system in the SemEval-2007 : task # 5 evaluation.
出处 《中文信息学报》 CSCD 北大核心 2014年第1期19-25,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61132009) 北京理工大学科技创新计划重大项目培育专项计划基金 国防基础基金
关键词 数据稀疏 模型优化 有监督模型 语言模型 参数估计 data sparseness model optimization supervised models language models parameter estimation
  • 相关文献

参考文献15

  • 1卢志茂,刘挺,张刚,李生.基于依存分析改进贝叶斯模型的词义消歧[J].高技术通讯,2003,13(5):1-7. 被引量:12
  • 2Chan Y S, Ng H T. Scaling up word sense disambigu ation via parallel texts[C]//Proceedings of AAAI 2005, 5: 1037-1042.
  • 3Dang H T, Palmer M. The role of semantic roles in disambiguating verb senses [C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguis-tics, 2005: 42-49.
  • 4Dong Zhendong, Dong Qiang. Hownet[OL]. 1999. [2010-11-5], http://www, keenage, corn.
  • 5刘鹏远,赵铁军.利用语义词典Web挖掘语言模型的无指导译文消歧[J].软件学报,2009,20(5):1292-1300. 被引量:7
  • 6Song F, Croft W B. A general language model/or in- formation retrieval[C]//Proceedings of the eighth in- ternational conference on information and knowledge management. ACM, 1999.. 316-321.
  • 7Mart nez D, Agirre E, Mrquez L. Syntactic features for high precision word sense disambiguation[C]// Proceedings of the 19th International Conference on Computational Linguistics-Volume 1. Association for Computational Linguistics, 2002: 1-7.
  • 8范冬梅,卢志茂,张汝波,潘树燊.基于信息增益改进贝叶斯模型的汉语词义消歧[J].电子与信息学报,2008,30(12):2926-2929. 被引量:8
  • 9Escudero G, Mdrquez L, Rigau G. Naive Bayes and exemplar-based approaches to word sense disambigu- ation revisited[J], arXiv preprint cs/0007011, 2000.
  • 10Carpuat M, Wu D. Word sense disambiguation vs. statistical machine translation[C]//Proeeedings of the 43rd Annual Meeting on Association for Computa- tional Linguistics. Association for Computational Lin- guistics, 2005.. 387-394.

二级参考文献33

共引文献64

同被引文献66

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部