期刊文献+

低信噪比下非凸化压缩感知超宽带信道估计方法 被引量:10

Non-Convex Compressive Sensing Ultra-Wide Band Channel Estimation Method in Low SNR Conditions
在线阅读 下载PDF
导出
摘要 受感知信息算子矩阵相干性和噪声的影响,压缩感知超宽带(UWB)信道估计误差过大.为此,首先提出利用压缩观测信号加权构造自适应感知信息(ASI)算子矩阵的方法,ASI算子矩阵不仅具有弱相干性,而且包含观测信息,适用于重建算法选择最优稀疏表示原子.其次提出修正稀疏度自适应匹配追踪(SAMP)算法,无需稀疏度或信噪比的先验信息实现压缩感知稀疏信号准确重建.最后基于ASI算子矩阵和修正SAMP算法提出非凸化压缩感知UWB信道估计方法,理论分析和仿真结果均表明该方法能在低信噪比和极低压缩比下实现UWB信道的准确估计. There could be large error in Compressive Sensing Ultra-Wide Band (CS-UWB ) channel estimation because of the coherence of sensing information matrix and the noise interference .Firstly ,the Adaptive Sensing Information (ASI ) matrix is constructed by measurement vector weighting ,which has the desirable properties of low coherence and containing measurement in-formation to support the sparse recovery algorithms to obtain optimal atoms .Secondly ,a modified Sparsity Adaptive Matching Pur-suit (SAMP ) algorithm is proposed to recovery sparse signal accurately without prior information of sparsity or SNR .Finally ,a non-convex CS-UWB channel estimation method is presented based on the ASI matrix and the modified SAMP algorithm .Both the theoretical analysis and the experimental results show that this method can accurately reconstruct UWB communication channel in low SNR conditions with very low compressive sampling ratio .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第2期353-359,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171170)
关键词 压缩感知 超宽带通信 稀疏信道估计 自适应感知信息算子 修正SAMP算法 compressive sensing ultra-wide band communication sparse channel estimation adaptive sensing information operator modified SAMP algorithm
  • 相关文献

参考文献20

  • 1D L Donoho. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52(4) : 1289 - 1306.
  • 2T Agrawal, V Lakkundi, A Ca'iffm, et al. Compressed sensing for OFDM UWB systems[ A]. Radio and Wireless Symposium [C]. Phoenix,USA,2011. 190 - 193.
  • 3J L Paredes, G R Arce, Z Wang. Ullra-wideband compressed sensing:channel estimation[J] .IEEE Journal of Selected Top- ics in Sisal Processing,2007, 1(3) :383 - 395.
  • 4于华楠,郭树旭.基于压缩感知的超宽带信道估计方法的研究[J].电子与信息学报,2012,34(6):1452-1456. 被引量:12
  • 5E Candes,J Romberg. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2037,23 (3) : 969 - 985.
  • 6李佳,王强,沈毅,李波.压缩感知中测量矩阵与重建算法的协同构造[J].电子学报,2013,41(1):29-34. 被引量:19
  • 7焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:318
  • 8王军华,黄知涛,周一宇,王丰华.基于近似l_0范数的稳健稀疏重构算法[J].电子学报,2012,40(6):1185-1189. 被引量:30
  • 9R Yah, Q Wan, L Y Wan, et al. Greedy approach to sparse multi-path channel estimation using sensing dictionary[J]. In- ternational Journal of Adaptive Control and Signal Processing, 2011,25(6) :544 - 553.
  • 10K Schnass, P Vandergheynst. Dictionary preconditioning for greedy algorithms[ J] .IEEE Transactions on Signal Process, 2008,56(5) : 1994 - 2002.

二级参考文献190

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 3Abdallah S A, Plumbley M D. Unsupervised analysis of polyphonic music by sparse coding [J].IEEE Transactions on Neural Networks, 2006, 17 ( 1 ) : 179- 196.
  • 4Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) :3010-3022.
  • 5Liu H H, Schimpf P H, Dong G Y. Standardized shrinking LORETA-FOCUSS (SSLOFO) : A new algorithm for spatio-temporal EEG source reconstruc-tion [J].IEEE Transactions on Biomedical Engineering, 2005, 52(10):1681-1691.
  • 6Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 7Yeste-Ojeda O A, Grajal J. Atomic decomposition for ISAR imaging [C-]//IEEE Conference on Radar. [s. l. ]:IEEE, 2006: 504-509.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993,41(12) : 3397-3415.
  • 9Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7) :2845-2862.
  • 10Donoho D L. Wedgelets: Nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999, 27 (3) : 959-897.

共引文献423

同被引文献70

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部