期刊文献+

基于LDA的网络评论主题发现研究 被引量:42

Topic Extraction Research of Net Reviews Based on Latent Dirichlet Allocation
在线阅读 下载PDF
导出
摘要 网络用户评论的主题发现研究是Web2.0时代信息分析的重要方式,如何从冗杂的用户评论中分析出有价值的信息是研究的热点。针对网络用户评论信息内容短、信息量少的特征,提出基于LDA(latent Dirichlet allocation)主题发现模型结合HowNet知识库进行信息分析的方法,对网络评论进行主题发现的研究。首先通过评论文本的词性标注、语义分析,形成语料库,然后利用HowNet对语料库中的词项进行语义相似度的计算,完成语义去重、合并,最后通过LDA主题模型将用户评论的内容映射到主题上,实现对用户评论信息主题的发现。 Topic extraction of web user opinions is an important way of web 2. 0 information analysis. How to analyze valuable informa-tion from miscellaneous user opinions is a challenging issue. Due to short information content and amount of web user opinions, the article put forward information analysis method based on Latent Dirichlet Allocation and HowNet knowledge base to extract net review topic. Firstly, to set up the corpus through textual tagging and semantic analysis of the reviews, then using HowNet to calculate semantic similari-ty of the corpus items and to reduce semantic repetition, finally, using Latent Dirichlet Allocation to map the topic and realize new review topic extraction.
作者 阮光册
出处 《情报杂志》 CSSCI 北大核心 2014年第3期161-164,共4页 Journal of Intelligence
关键词 网络评论 主题发现 网络信息分析 LDA(latentDirichletallocation) 语义分析 文本挖掘 web review topic extraction web information analysis LDA( Latent Dirichlet Allocation) semantic analysis text min-ing
  • 相关文献

参考文献12

  • 1Blei DM, Ng AY, Jordan MJ. Latent Dirichlet Allocation [ J ]. Journal of Machine Learning Research, 2003 (3) :993-1022.
  • 2Wei Xing, Croft W Bruce. LDA- based Document Models for Ad- Hoc Retrieval[ C]. Proceedings of the SIGIR. S eat t le, Washington, USA, 2006: 178-185.
  • 3Hristovski D, Friedman C, Rindflesch T C, et al. Literature- Based Knowledge Discovery using Natural Language Processing [ J ]. Literature - based Discovery, Information Science and Knowledge Management, 2008 (15) :133 152.
  • 4王金龙,徐从富,耿雪玉.基于概率图模型的科研文献主题演化研究[J].情报学报,2009,28(3):347-355. 被引量:22
  • 5王萍.基于概率主题模型的文献知识挖掘[J].情报学报,2011,30(6):583-590. 被引量:26
  • 6Kobayashi N, K Inni, Y Matsumoto, et al. Collecting Evalu- ative Expressions for Opinion Extraction [ C ]. Proceedings of Natural Language Proeess-lJCNLP 2004,2005:596-605.
  • 7Zhuang L, F Jing, X Y Zhu, et al. Movie Review Mining and Summarization] C]. Proceedings of the 15th ACM International Conference on Information and Knowledge Management 2006:43 -50.
  • 8Popescu AM, Etzioni O. Extracting Product Features and Opin- ions from Reviews[ C ]. Proc. of the Conference on Human Lan- guage Technology and Empirical Methods in Natural Language Proc. Stroudsburg, DA, USA: Association for Computational Linguistics ,2005:339-346.
  • 9Hu MQ, Liu B. Mining Opinion Features in Customer Reviews [ C]. Proc. of 9th National Conference on Artificial Intelligence. Men lo Park, CA, USA: American Association for Artificial In- telligence, 2004:755-760.
  • 10李文波,孙乐,张大鲲.基于Labeled-LDA模型的文本分类新算法[J].计算机学报,2008,31(4):620-627. 被引量:103

二级参考文献76

共引文献153

同被引文献520

引证文献42

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部