期刊文献+

腭裂语音高鼻音等级自动识别算法研究 被引量:4

Automatic Hypernasal Detection Based on Acoustic Analysis in Cleft Palate Speech
在线阅读 下载PDF
导出
摘要 为了对腭裂语音的高鼻音进行等级区分,提出基于声学特征参数分析的腭裂语音高鼻音等级自动识别算法,提取基于香农能量和Mel倒谱系数(Mel frequency cepstrum coefficient,MFCC)的S-MFCC作为声学特征参数,结合高斯混合模型(Gaussian mixture model,GMM)分类器实现对腭裂语音4类高鼻音等级(正常、轻度、中度和重度)的自动识别。实验结果表明,提出的自动识别算法取得了较高的高鼻音类别正确识别率,对4类高鼻音的平均识别率达到79%以上,其中,提出的S-MFCC参数取得了85%的平均正确识别率,优于传统的香农能量算法、MFCC算法,具有较高的临床应用价值。 In order to detect hypemasal automatically for cleft palate patients, based on Shannon energy and Me1 frequency cepstrum co- efficient acoustic features and by combining with Gaussian mixture model classifier, an automatic hypernasal detection algorithm was proposed. The experiment results showed that the presented method achieved a good performance on the detection of four levels of hy- pemasal, such as normal, low-level, moderate-level and high-level. The average classification accuracies for four levels of hypemasal were over 79%. Moreover, the correct recognition accuracy using energy plus Mel frequency cepstrum coefficient feature set reached up to 85%. The classification of hypernasal levels has important clinical applications.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第2期127-132,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金青年基金资助项目(30900391)
关键词 腭裂语音 高鼻音 香农能量 MEL倒谱系数 高斯混合模型识别器 cleft palate speech hypernasality Shannon energy Mel frequency cepstrum coefficient Gaussian mixture model classifier
  • 相关文献

参考文献16

  • 1Golding-Kushner K J. Therapy techniques for cleft palate speech and related disorder [ M ]. New York: Thomson Learning,2001 : 19 - 22.
  • 2Losee J E, Kirschner R. Comprehensive cleft care [ M ]. New York: McGraw-Hill Professional,2008:589 - 617.
  • 3Arias-Londono J D, Saenz-Lechon J, Osma-Ruiz V, et al. Au- tomatic detection of pathological voices using complexity measures, noise parameters and mel-cepstral coefficients [ J ]. IEEE Transaction on Biomedical Engineering,2011,58 (2) :370 - 379.
  • 4Little M. Objective dysphonia quantification in vocal fold pa- ralysis: Comparing nonlinear with classical measures [ J ]. Journal of Voice,2011,25( 1 ) :21 -31.
  • 5Arroyave J, Trejos E. Acoustic analysis and nonlinear dy- namics applied to voice pathology aetection: A review [ J ].Recent Patents on Signal Processing,2012,2 (2) : 1 - 12.
  • 6Mikhajlovich V E, Viktorovich L D, Karpovich M K,et al. Method of detecting pathology of voice leading speech : Rus- sia,RU Patem 2010104610[ P], 2011.
  • 7Cairns D A, Hansen J H L, Kaiser J F. Recent advances in hypemasal speech detection using the nonlinear Teager en- ergy operator [ C ]. 4th International Conference on Spoken Language Processing, Philadelphia, USA, 1996:780 - 783.
  • 8Vijayalakshmi P, Ramasubba M. The analysis on bandlimited hypernasal speech using group delay based formant extrac- tion technique [ C ]. 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, 2005 : 665 -668.
  • 9Maier A K, HSnig F, Hacker C, et al. Automatic evaluation of characteristic speech disorders in children with cleft lip and palate [ C ]. 9th Annual Conference of the International Speech Communication Association, Brisbane, Australia, 2008 : 1757 - 1760.
  • 10Maier A, Bocklet T, Noth E, et al. Automatic detection of articulation disorders in children with cleft lip and palate [ J ]. Journal of the American Statistical Association, 2009, 126 (5) :2589 - 2602.

同被引文献210

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部