摘要
本文利用微分算子的小波表示,讨论一维热传导方程初值问题的Daubechies小波解,给出此问题的显式离散格式.由于小波在时间和频率上的局部性,此方法特别适用于有奇异解的热传导方程,逼近精度高,而且没有发生解的振荡现象。
In this paper, the initial value problem of one-dimension heat-conduction equation solved by Daubechies wavelet is discussed. The explicit discrete scheme of the above problem is given using the wavelet representation of differential operator. Because the wavelets have the time-frequency local property, the above method especially adapt to the heat-conduction equation with the singular solution, and its accuracy is high, and do not have the oscillation phenomenon.
出处
《应用数学学报》
CSCD
北大核心
2001年第1期10-16,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
黑龙江省自然科学基金资助项目.
关键词
热传导方程
微分算子
小波
显式离散格式
初值问题
数值解
Heat-conduction equation, differential operator wavelet approximate, explicit discrete scheme