期刊文献+

MUTUAL ARTIFICIAL BEE COLONY ALGORITHM FOR MOLECULAR DOCKING

MUTUAL ARTIFICIAL BEE COLONY ALGORITHM FOR MOLECULAR DOCKING
原文传递
导出
摘要 Molecular docking method plays an important role on the quest of potential drug candidates, which has been proven to be a valuable tool for virtual screening. Molecular docking is commonly referred to as a parameter optimization problem. During the last decade, some optimization algorithms have been introduced, such as Lamarckian genetic algorithm (LGA) and SODOCK embedded in the AutoDock program. On the basis of the latest docking software AutoDock4.2, we present a novel docking program ABCDock, which incorporates mutual artificial bee colony (MutualABC) into AutoDock. Computer simulation results demonstrate that ABCDock takes precedence over AutoDock and SODOCK, in terms of convergence performance, accuracy, and the lowest energy, especially for highly flexible ligands. It is noteworthy that ARCDock yields a higher success rate. Also, in comparison with the other state-of-the-art docking methods, namely GOLD, DOCK and FlexX, ABCDock provides the smallest RMSD in 27 of 37 cases.
机构地区 School of Software
出处 《International Journal of Biomathematics》 2013年第6期17-27,共11页 生物数学学报(英文版)
基金 Acknowledgments This work was supported by the Natural Science Foundation of China (No. 60803074), and the Fundamental Research Filnds for the Central Universities (No. DUTIOJR06).
关键词 Artificial Bee Colony AUTODOCK molecular docking 分子对接 群算法 工蜂 最优化算法 对接方法 虚拟筛选 优化问题 遗传算法
  • 相关文献

参考文献2

二级参考文献25

  • 1D. Teodorovie, M. Dell'Orco. Bee colony optimization-a cooperative learning approach to complex transportation problems. Proc. of the 16th Mini-EURO Conference on Advanced OR and Al Methods in Transportation, 2005: 51-60.
  • 2E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence: from natural to artificial systems. New York: Oxford University Press, 1999.
  • 3D. Karaboga, B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 2007, 39(3): 459-471.
  • 4D. Karaboga. An idea based on honey bee swarm for numerical optimization. Erciyes: Erciyes University Press, 2005.
  • 5D. Karaboga, B. Akay. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 2009, 214(1): 108-132.
  • 6B. Akay, D. Karaboga. A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 2012, 192(6): 120-142.
  • 7J. H. Holland. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975.
  • 8J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proc. of lEEE International Conference on Neural Networks, 1995: 1942-1948.
  • 9D. Srinivasan, T. Seow. Evolutionary computation. Proc. of IEEE Conference on Electronic Commerce, 2003: 2292-2297.
  • 10Z. Wenping, Y. Zhu, H. Chen, et al. Cooperative approaches to artificial bee colony algorithm. Proc. of the International Conference on Computer Application and System Modeling, 2010: 44-48.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部