期刊文献+

基于改进的TCM-KNNDoS检测算法 被引量:10

Algorithm Based on ITCM-KNN for Denial of Service Detection
在线阅读 下载PDF
导出
摘要 由于实现方式简单、攻击形式多样、威胁范围广、不易防御和区分,拒绝服务(DoS)攻击已经成为网络的最主要安全威胁之一。该文提出了一种ITCM-KNN算法,在此基础上建立了DoS检测框架。使用标准数据集KDD Cup 1999进行算法验证和分析实验。采用基于信息增益算法选择了5个特征,在保证高检测效果的同时减少了特征的维数。该算法不需要对攻击进行学习和建模,使用少量的正常样本作为训练集,提高了检测性能。实验结果表明,改进的TCM-KNN算法检测率高于SVM等算法,达到99.99%。 Because of the simplicity of the implementation, various attacking forms, destructivity, and difficulty of filtering out, DoS has become one of the most serious security threats to the Internet. In this paper, we propose an improved transductive confidence machines for k-nearest neighbors (ITCM-KNN) algorithm and establish a framework for DoS detection. Evaluation and experiments of the algorithm are based on the standard dataset KDD Cup 1999 with 5 selected features using the information gain algorithm, which can ensure high detection rate while reducing the dimension of the features. The proposed algorithm does not need learning and modeling attacks. It only needs a small number of samples as training data set. The comparison results show that the true positive rate (TP) of the improved TCM-KNN algorithm is about 99.99%, which is higher than other detection algorithm such as SVM.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第1期76-81,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61133016) 国家自然科学基金 中物院联合基金(U1230106) 工信部科技重大专项(2011ZX03002-002-03) 国家信息安全计划(2010A14) 电子发展基金(信部运(2007)329) 四川省科技支撑计划(M110106012009FZ0148)
关键词 拒绝服务攻击 拒绝服务攻击检测 TCM-KNN算法 DoS attack DoS detection improved transductive confidence machines for K-nearest neighbors
  • 相关文献

参考文献17

  • 1LIU Wen-tao. Research on DoS attack and detection programming[C]//2009 3rd International symposium on Intelligent Information Technology Application. Nanchang, China: IEEE, 2009: 207-210.
  • 2HU Liang, BI Xiao-ming. Research of DDoS attack mechanism and its defense frame[C]//2011 3rd IEEE International Conference on Computer Reseach and Development. Shanghai, China: IEEE, 2011:440-442.
  • 3DIVAKARAN D M, MURTHY H A, GONSALVES T A. Detection of SY-N flooding attacks using linear prediction analysis[C]//Proceedings of 2006 IEEE International Conference on Networks. Singapore: Saira Kuttan Publication Chair, 2006: 218-224.
  • 4MUKKAMALA S, SUNG A H. Detecting denial of service attacks using support vector machines[C]//Proceedings of the 12th IEEE International Conference on Fuzzy Systems. Louis, Missouri, USA: IEEE, 2003: 1231-1236.
  • 5TSANG G C Y, CHAN P P K, YEUNG D S, et al. Denial of service detection by support vector machines and radial- basis function neural nework[C]//Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Shanghai, China: IEEE, 2004: 4263-4268.
  • 6ABDELSAYED S, GLIMSHOLT D. An efficient filter for denial-of-service bandwidth attcks[C]//GLOBECOM'03, IEEE Global Telecommunications Conference. San Francisco, CA, USA: IEEE, 2003: 1353-1357.
  • 7ZHANG Zheng, MANIKOPOULOS C N. Detecting denial- of-service attacks through feature cross-correlation[C]//2004 IEEE/Samoff Symposium on Advances in Wired and Wireless Communication. Princeton, New Jersey: IEEE, 2004: 67-70.
  • 8李涵秋,马艳,雷磊.基于相对熵理论的网络DoS攻击检测算法[J].电讯技术,2011,51(3):89-92. 被引量:4
  • 9刘衍珩,付枫,朱建启,孙鑫.基于活跃熵的DoS攻击检测模型[J].吉林大学学报(工学版),2011,41(4):1059-1064. 被引量:22
  • 10李洋,方滨兴,郭莉,陈友.基于直推式方法的网络异常检测方法[J].软件学报,2007,18(10):2595-2604. 被引量:26

二级参考文献45

共引文献226

同被引文献75

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部