期刊文献+

一种应用机器学习和D-S证据理论的Linux病毒检测方案

A Linux Virus Detection Method Using Machine Learning and D-S Theory
在线阅读 下载PDF
导出
摘要 设计了一种应用机器学习和D-S证据理论来进行Linux病毒检测的方案。主要包括方案的总体框架、样本特征选择方法、分类器选择、检测效果融合以及方案验证与结果分析等。在样本特征选择时引入了控制流程图的概念,在检测效果融合时使用了D-S证据理论的方法。最后在基于Weka软件的机器学习平台上实现和测试了该方案。验证结果表明,该Linux病毒检测方案具有良好的检测率和可靠性,可以应用于实际的商业产品中。 This paper mainly designs and realizes a Linux virus detection method using machine learning and D-S theory.It includes the design’s general framework,feature selection method,classifier selection method,detection result fusion and the design verification and result analysis.It intrdouces the control flow graph while doing feature selection,and introduces D-S theory while doing detection result fusion.Then it implements and test the method on the platform of Weka software.The results of implementation show that this design to detect Linux virus has high efficiency and good reliability,and it is adequate for commercial products.
出处 《单片机与嵌入式系统应用》 2014年第4期28-31,共4页 Microcontrollers & Embedded Systems
基金 国家重大专项"TD-SCDMA增强型多媒体手机终端的研发和产业化"(2009ZX03001-002-01)
关键词 LINUX系统 病毒检测 机器学习 D—S证据理论 控制流程图 Linux operating system virus detection machine learning D-S theory CFG
  • 相关文献

参考文献6

  • 1Gavrilut D,Cimpoesu M,Anton D, et al. Malware detection using machine learning[C] //Computer Science and Informa- tion Technology, 2009. IMCSIT'09. International Multicon- ference on. IMCSIT, 2009: 735 - 741.
  • 2Zongqu Zhao. A virus detection scheme based on features of Control Flow Graph[C]// Artificial Intelligence, Manage- ment Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on AIMSEC, 2011 : 943 - 947.
  • 3朱裕禄.Linux系统下的ELF文件分析[J].电脑知识与技术,2006(9):111-113. 被引量:5
  • 4张小康,帅建梅,史林.基于加权信息增益的恶意代码检测方法[J].计算机工程,2010,36(6):149-151. 被引量:9
  • 5雷蕾,王晓丹.结合SVM与DS证据理论的信息融合分类方法[J].计算机工程与应用,2013,49(11):114-117. 被引量:26
  • 6Xu L. Methods of combining multiple classifiers and their ap- plications to handwriting recognition[J]. IEEE Transactions on Systems, Man and Cybernetics Society, 1992 (5/6): 418 -435.

二级参考文献16

  • 1张静,宋锐,郁文贤,夏胜平,胡卫东.基于混淆矩阵和Fisher准则构造层次化分类器[J].软件学报,2005,16(9):1560-1567. 被引量:27
  • 2杨露菁,郝威.多传感器目标识别的神经网络与证据理论结合方法[J].探测与控制学报,2006,28(1):40-43. 被引量:8
  • 3Schultz M G, Eskin E, Zadok E, et al. Data Mining Methods for Detection of New Malicious Executabtes[C]//Proc. of the IEEE Symposium on Security and Privacy. Oakland, California, USA: IEEE Press, 2001: 38-49.
  • 4Assaleh T A, Cercone N, Keselj V, et al. Detection of New Malicious Code Using N-grams Signatures[C]//Proc. of the 2nd Annual Conference on Privacy, Security and Trust. Ontario, Canada [s. n.], 2004: 193-196.
  • 5Kolter J Z, Maloof M A. Learning to Detect and Classify Malicious Executables in the Wild[J]. Journal of Machine Learning Research, 2006, 7: 2721-2744.
  • 6Reddy D S, Dash S K, Pujari A K. New Malicious Code Detection Using Variable Lenglb N-grams[C]//Proc. of the 2nd International Conference on Information Systems Security. Kolkata, India: [s. n.], 2006: 276-288.
  • 7Cohen P, Heeringa B, Adams N M. An Unsupervised Algorithm for Segmenting Categorical Time Series into Episodes[C]//Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery. London, UK: [s. n.], 2002: 49-62.
  • 8张金泽,单甘霖.SVM与证据理论集成的信息融合故障诊断技术研究[J].电光与控制,2007,14(4):187-190. 被引量:2
  • 9Ai Lingmei, Wang Jue, Wang Xuelian.Multi-features fusion diagnosis of tremor based on artificial neural network and D-S evidence theory[J].Signal Processing, 2008,88 : 2927-2935.
  • 10Sharer G A.Mathematical Princeton University Press, theory of evidence[M].Princeton: 1976.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部