期刊文献+

中文社会化媒体的本体概念抽取研究 被引量:5

Research on Ontology Extraction for Chinese Social Media
原文传递
导出
摘要 本文以信息熵的理论为基础,建立了社会化媒体的本体概念抽取模型,开发了社会化媒体的本体概念抽取原型系统。实验证明该中文社会化媒体概念抽取系统具有较好的准确率和召回率,并在对本体概念的同义词抽取上具有一定的优势。 In this paper, we use information entropy theory as the basic theory, then we establishes a so- cial media ontology extraction model and develops the social media ontology extraction prototype systems. After that, we make a experiments to show that the social media concept extraction system has good accu- racy and recall rate. And there is also has certain advantages for the synonym ontology extraction.
作者 唐晓波 胡华
出处 《情报科学》 CSSCI 北大核心 2014年第4期9-15,共7页 Information Science
基金 国家自然科学基金项目(71273194)
关键词 概念抽取 词性规则 互信息 左右信息熵 concept extraction speech rules mutual information left and right information entropy
  • 相关文献

参考文献13

  • 1Embley D W, Campbell D M, Smith R D, et al. Ontolo-gy-based extraction and structuring of information from data-rich unstructured documents[C]. Proceed- ings of the seventh international conference on Infor- mation and knowledge management. ACM, 1998: 52-59.
  • 2王桐,王磊,吴吉义,徐贺.WordNet中的综合概念语义相似度计算方法[J].北京邮电大学学报,2013,36(2):98-101. 被引量:25
  • 3Hong J L. Data extraction for deep web using wordnet [J]. Systems, Man, and Cybernetics, Part C: Applica- tions and Reviews, IEEE Transactions on, 2011, 41 (6): 854-868.
  • 4Chen Y. Relation extraction for ontology extension us- ing integrated evidences[D]. Hong Kong: The Hong Kong Polytechnic University, 2011.
  • 5钟伟金.共现关键词—叙词同义关系自动识别研究——基于互信息法、概率法的对比分析[J].图书情报工作,2012,56(18):122-126. 被引量:9
  • 6Tsui E, Wang W M, Cheung C F, et al. A concept - rela- tionship acquisition and inference approach for hierar- chical taxonomy construction from tags[J]. Informa- tion processing & management, 2010, 46(1): 44-57.
  • 7Shannon C E. A mathematical theory of communication [J]. ACM SIGMOBILE Mobile Computing and Commu- nications Review, 2001, 5(1): 3-55.
  • 8罗盛芬,孙茂松.基于字串内部结合紧密度的汉语自动抽词实验研究[J].中文信息学报,2003,17(3):9-14. 被引量:32
  • 9Church K W, Hanks P. Word association norms, mutual in- formation, and lexicography[J]. Computational linguistics, 1990, 16(1): 22-29.
  • 10李丹.特定领域中文术语抽取[D].大连:大连理工大学,2012:26-27.

二级参考文献35

共引文献63

同被引文献96

  • 1任明,许光,王文祥.家谱文本中实体关系提取方法研究[J].中文信息学报,2020(6):45-54. 被引量:8
  • 2吴光远,何丕廉,曹桂宏,聂颂.基于向量空间模型的词共现研究及其在文本分类中的应用[J].计算机应用,2003,23(z1):138-140. 被引量:24
  • 3任禾,曾隽芳.一种基于信息熵的中文高频词抽取算法[J].中文信息学报,2006,20(5):40-43. 被引量:22
  • 4姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 5Jones Q, Ravid G, Rafaeli S. Information overload and the message dynamics of online interaction spaces: A theoretical model and empirical exploration[J]. Information Systems Research, 2004, 15(2): 194-210.
  • 6Nelson P. Information and consumer behavior[J]. Journal of Political Economy, 1970, 78(20): 311-329.
  • 7Hu M, Liu B. Mining opinion features in customer reviews[J]. AAAI, 2004, 4(4): 755-760.
  • 8Miller G A. WordNet: An on-line lexical database[J]. International Journal of Lexicography, 1990, 3(4): 235 -312.
  • 9Carenini G, Ng R T, Zwart E. Extracting knowledge from evaluative text[C]// Proceedings of the 3rd Interna- tional Conference on Knowledge Capture, ACM, 2005: 11-18.
  • 10Yi J, Nasukawa T, Bunescu R, et al. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques[C]// Data Mining, ICDM 2003. Third IEEE International Conference on. IEEE, 2003: 427-434.

引证文献5

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部